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THEORETICAL STUDY OF STRESS CONCENTRATIONS AT
CIRCULAR HOLES AND INCLUSIONS IN

STRAIN HARDENING MATERIALSt

WU-CHENG HUANG

Harvard University. Cambridge. Massachusetts

Abstract-Nonlinear boundary value problems of an infinite elastic-plastic plate with a circular hole subjected
to pure tension and pure shear at infinity are solved by a method involving fourier series and finite difference.
On the basis of these solutions. the validity of Neuber's relationship between the stress and strain concentration
factors for the plane stress problems is examined and a generalized Stowell formula for the stress concentration
factor is proposed for problems in which the applied loading may be pure shear as well as pure tension and,
furthermore, other stress states. By the same method of solution, the stress distributions around a rigid circular
cylindrical inclusion embedded in an infinite rigid-plastic matrix subjected to uniform transverse pure shear and
tension are obtained.

1. INTRODUCTION

THEORETICAL studies of stress concentrations around structural discontinuities in an elastic
material have been made for a wide variety of cases, but few corresponding studies for
strain hardening materials have been made. A number of authors have considered one
dimensional plastic problems, such as an infinite plate with a circular hole under uniform
radial load [1-4] and a circular cylindrical inclusion embedded in an infinite matrix
subjected to uniform transverse radial stress [5]. The only two dimensional strain-hardening
problem (i.e. with stress varying in two space coordinates) which has been well investigated
is an infinite plate with a circular hole under pure tension [6-8].

In the present study, three two dimensional problems are investigated. Due to its
importance and for the sake of comparison with earlier work, the elastic-plastic plate in
tension with a circular hole (see Fig. 1) is considered first and followed by the problem of
an infinite plate with a circular hole subjected to pure shear at infinity (see Fig. 2). This
latter problem is relevant to such engineering structures as a thin-walled hollow beam
with a small circular hole under torsion and the web with holes in an I beam subjected to
severe transverse shearing load. As a first attempt to understand the stress concentration
around a fiber in a fibrous reinforced composite, analyses of the stress distribution around
a rigid circular cylindrical inclusion in an infinite matrix subjected to uniform transverse
pure shear and tension (see Figs. 3 and 4) are made. Here the study is restricted to a rigid­
plastic matrix with a power law strain hardening material.

Stowell [9] presented an approximate formula

K = (uo)a,lt/2 = 1+2(E.)a.lt/2
u 00 (E.) 00

t This work was supported in part by the National Aeronautics and Space Administration under Grant
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FIG. 1. Circular hole in an infinite plate subjected to pure tension.
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FIG. 2. Circular hole in an infinite plate subjected to pure shear.
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FIG. 3. Cylindrical inclusion in an infinite matrix subjected to transverse pure shear.
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FIG. 4. Cylindrical inclusion in an infinite matrix subjected to transverse pure tension.

for the stress concentration factor K in a plate with a circular hole (see Fig. 1) subjected
to pure tension; here Es means the secant modulus. Based on experimental results,
Hardrath and Ohman [10] generalized this formula for plates with arbitrary holes, notches
and fillets under pure tension as

K 1 (K 1)(Es)max slress
plastic = + elastic - (E

s
)",'

Neuber [11] obtained a relationship between stress and strain concentration factors,
namely,

KaK~ = K1

by considering a notched prismatic body under antiplane shear; here K H is the elastic
stress concentration factor. In the present study, based on the results of our analysis the
validity of the Neuber rule for plane stress problems is examined and a generalized Stowell
formula is proposed for problems in which the applied loading may be pure shear as well
as pure tension and, furthermore, other stress states.

2. mE BOUNDARY VALUE PROBLEMS

1ntroduction

All the problems which are studied in this paper are concerned with two dimensional
boundary value problems consisting of an infinite region exterior to a circular boundary.
The ability to perform a plastic analysis of this kind of boundary value problem has been
limited because of the uncertain stress-strain relation and the nonlinearity ofthe governing
equation. The only stress-strain relations which have been used in the past to solve such
problems are the simplest deformation theory of plasticity and the simplest incremental
theory of plasticity. The use of a deformation theory in the solution of boundary value
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problems requires much .less work than the use of a corresponding incremental theory,
but it has often been criticized on the grounds that deformation theories are physically
unsound except for the case of proportional loading. It is shown in Ref. [12J, however,
that deformation theories of plasticity may be used for a range of loading paths other than
proportional loading without violation of general requirements for the physical soundness
of a plasticity theory.

In view of this, the J 2 deformation theory is employed in this analysis, and the accept­
ability can be justified by examination of the results by the criterion established in Ref. [12].

Because of the nonlinearity introduced by the constitutive equations of plasticity,
finding the exact solution of boundary value problems is virtually hopeless, except for one
dimensional problems. Approximate methods that have been employed are the Rayleigh­
Ritz method [6J, the finite element method [8J and the finite difference method [7]. In this
section, a method involving fourier series and finite difference is presented. The governing
equations, based on J 2 deformation theory and the Ramberg-Osgood stress-strain relation,
are formulated in terms of a stress function for both plane stress and plane strain (under
the restriction of no unloading). By taking advantage of the geometry, the solution is
expanded into fourier series in the circumferential direction and the fourier coefficients,
which are functions of the radial coordinate only, are determined by a finite difference
method. Here the Potters' method [13J is employed.

Ramberg-Osgood uniaxial stress--strain relation

Ramberg and Osgood [14J suggested that the uniaxial stress-strain curve for a variety
of structural materials can be described by the formula

(2.1)

where a and e are the uniaxial stress and strain, respectively. Here E is the elastic modulus,
and n is a parameter chosen to provide the best fit to the stress--strain curve of a particular
material under consideration. The nominal yield stress aI may be interpreted in either of
two ways. It may be considered as an arbitrary parameter providing for a best fit or it is
equal to the value of the stress at which the secant modulus E. is equal to 0·7 E. Figure 5
shows plots of alaI vs. EelaI for several values of n.

It may be noted that this relation gives the elastic relation e alE for a « aI and gives
the pure power law relation e kan for a » 0'1'

J 2 deformation theory of plasticity

Based on the simplest total deformation theory of plasticity and the von Mises yield
criterion, the strains are related to the stresses by

(2.2)

where v is the Poisson's ratio, E. is the secant modulus of the uniaxial stress-strain curve
at the effective stress given by
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FIG. 5. Nondimensional Ramberg-Osgood stress·-strain curves.

and Sij is the stress deviator defined by

Any solution must, of course, be checked to insure that fJ at every point is non-decreasing
(i.e. there must not be unloading). Furthermore, it is desirable to examine the extent of the
deviation of the stress path at every point from proportional loading by the criterion of
Ref. [12] in order to make sure that the use of deformation theory does not violate basic
requirements of the theory of plasticity.

Governing equations

In either generalized plane stress or plane strain, equilibrium is insured for all stresses
derived from a stress function <p by

(10 = ¢",

where r, 8 are cylindrical coordinates and ( Y= O/or, ( r = 0/08.
The strains must satisfy the compatibility equation

In plane stress, the stress components acting on the plane parallel to the plate are
neglected. The effective stress is therefore



154 WU-CHENG HUANG

while the strains are given, by (2.2), as

Here

1_1[ 3(I1)n-1J--- 1+--
E. E 7 (fr '

if the Ramberg-Osgood formula is used.
With the introduction of the non-dimensional quantities

(fr (f/J S _ (fr/J S = (j
Sr=-' S/J=-, r6 - ,

(foo (foo (foo (foo

A = (foo \n-1 a
F = x 2!t, p =7 ' x =-,

(fr r (foo

the compatibility equation becomes

(2.3)

where ( )' = Ojox, ( r = 0/00, the stress components in terms of the modified stress
function Fare

and the stress-strain relations are

Sr = 2F-xF'+Y·

S/J = 2F-2xF'+x2F"

Sr/J = xF'·-Y

(2.4)

where

(2.5)
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It may be noted that the infinite region exterior to the circular boundary has been trans­
formed into a unit circle.

Substitution of equations (2.4), (2.5) into equation (2.3) gives the following governing
equation in terms of the modified function F:

(1 +psn-l)(2x4F"" +4x3 F III -2x2F" +4x2F"" +2xF' -4xF'" + SF'" +2F'"")

+p[(sn-l)'(4x4F''' +x3F" -2x2F' +4x2F'" +2xF -4xF'")

+(sn-l)"(4x2F'" - 6xF'" + 10F' +4F'"') +6(sn-l)"(x2F'" -xF')

+(sn-l)"(2x2F - 3x3 F' + 2x4F" _x2F'")+(sn- 1n2F + 2F'" - x2F")] = 0 (2.6)

where

8 = (S; +S~ - SrSe +3S;e)t.

For p -+ 0 or n = 1, this equation leads to the homogeneous linear partial differential
equation

x4F"" +2x3 F''' -x2F" +2x2F"" +xF' -2xF'" +4F" +F.... = 0 (2.7)

which is the governing equation for the elastic solution. On the other hand, for p -+ 00

equation (2.6) can be reduced to

~2(2x4F"" + 4x3Fill - 2x2F" + 4x2F"" + 2xF' - 4xF'" + SF'" + 2F'''')

+-!<n-1)[l(n- 3)~'2 +~~"](2X2F- 3x3 F' +2x4F" -x2F'")

+l(n-1)~~'(4x4FIII +x3F" -2x2F' +4x2F'" +2xF -4xF'")

+-!<n-1)~~'(4x2F'" - 6xF'" +1OF' +4F''')

+-!<n-1)[l(n- 3)~'2 +~~"](2F+ 2F'" - x2F")

+-!<n-1)[-!<n-3)~'~'+~~"](6X2F" -6xF') = 0 (2.S)

where ~ = 82
• This is the governing equation for the problems in which the uniaxial

stress-strain relation is taken to be a pure power law. It is worthy of note that the degree
of the nonlinearity is independent of n.

In plane strain, if the strain component in the longitudinal direction is assumed to
vanish (i.e. f:z = 0), the corresponding stress component can be expressed as

and the stress-strain relations are given by
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By introducing the same non-dimensional quantities as in the plane stress case and with
the use of the Ramberg-Osgood relation, we obtain the governing equation as

[

l' 3 (.l_V)(v+.lpsn-l)]
1-"2+"4Psn-1 + 2 1+ PS;-I (x4 F"" + 2x3F'" + 2x2F"" +xF' _x2F"

- 2xP" +4P' + F"'") +.lp[(Sn-1 )'(2x4 F'" +x3F" _x2F' + 2x2P" - 3xF")

+(S" - 1)"(2x2F'" - 2xF" + 2F'" + 4F) + (sn - 1)"(x4F" - x 3F' x2 F")

+4(sn-l)'"(x2p' -xF)+(sn-If(F" +xF' x2F")]

+ (l :~~" V)1
2

)2 [(sn-I)'(2X4F''' _x3F" - x2F' + 2x2
p" +4xF + xF")

{
2 (sn-I )'2}

+2(sn- 1H4F -3xP' +x2F'" +F"')+ (sn-I)" p (4x2F
1+psn 1

{
2 (sn-l)"2} ]-3x3 F'+X4F"+X2F")+ (sn-I)""_ p (4F-3xF' +x2F" +F") =0 (2.9)
1+pS" 1

where the effective stress can be expressed in an implicit form as

[(S S)2 ] ( 1)2~2 r- /I 2 V-2 2
S = 3 -2- +Sr/l + 1+pS" 1 (Sr+S/I)' (2.10)

For p --+ 0 or n = 1, this equation also provides equation (2.7), and for p --+ 00, it can be
reduced to

S2(X4F"" + 2x3F''' - x2 F" + 2x2F"" + xF' - 2xF'" + 4F" + F"')

+!(n -1) [!(n - 3)S'2 +SS"](x4F" - x3F' - x 2F")

+!(n - 1)SS'(2x4F'" +x3F" - x2 F' +2x2P" - 3xF")

+!(n-l)SS'(2x2F'" -2xF" +2F" +4F)

+t(n - l)[!(n - 3)S'2 +SS"](F" +xF' _x2F")

+!(n-l)[!(n-3)S'S' +SS"](4x2P' -4xF') 0 (2.11)

where

Method of solution
(a) Plane stress. Rewrite equation (2.6) as

2Cl(x4F"" +2x3F'" -x2F" +xF' -2xF''' +4F" +F.... +2x2F"")

+ c2(2x2F 3x3 F' +2x4 F" - x2F")

+ C3(4x4 F'" + x3F" + 4x2F'" + 2xF - 4xF" - 2x2F')

+ 2c4(2x2F'" - 3xF" +SF +2F")

+cs(2F +2F" - x 2 F")+ 6C6(X2P' - xF) = 0 (2.12)
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where
C1 :::::: 1+pst(n-1)

C2 :::::: ~n-l)pSt(n-5)[~n-3)S'2+SSIf]

C3 :::::: ~n-l)pSt(n-5)SS/

C4 :::::: ~n-l)pSt(n-5)sS'

Cs :::::: ~n-l)pSt(n-5)[j{n-3)S'2+SS"]

C6 :::::: ~n-1)pst(n-S)[j{n-3)S'S/ +SS'l

Equation (2.8) (for p :::::: 00) can also be written in the form (2.12), with

C1 :::::: S2

C2:::::: j{n-l)[~n-3)S/2+SS'/]

C3 :::::: j{n -1)SS'

C4 :::::: ~n-l)SS'

Cs:::::: j{n-l)[~n-3)S'2+SS"]

C6:::::: ~n-l)[~n-3)S'S'+SS'1

Let the direction 0 :::::: 0 coincide with one of the principal axes of the applied load;
then the solution can be expanded into a fourier series of the form

00

F :::::: L fm(x) cos mO.
m=0,2.4....

Substitution into equation (2.12) gives

00

L (A 4m f;;:' + A 3m f;;: +A2mf~ + A1mf~ + Aomfm) = 0 (2.13)
m=O.2.4•...

where
A 4m :::::: 2C 1X

4 cos mO
A 3m :::::: 4x3

(C 1 +xc3)cos mO

A 2m :::::: x2[{ - 2c 1(1 +2m2)+2C2X
2+c3x -Cs} cos me-4mc4 sin me]

A 1m :::::: x[{2(c1 -C3X)(1 +2m2)-3c2X2} cos m{}-6m(c6x-c4) sin m{}]

A om :::::: {2c1m2(m2 -4)+c2x2(2+m2)+2c3x(1 +2m2)+2cs(1-m2)} cos me

+ {6c6xm-2c4m(5-2m2)} sin mO.

Here the A's are even functions of 0, and can be represented by cosine series as
00

ASI = L B{lx) cosjO.
j= 0.2.4....

Substitute into equation (2.13) and let the coefficient of cos jO equal zero. A set of ordinary
differential equations is obtained as

00

" (Bj fm/ +Bj fm +Bj fn +Bj f' +Bj f,) = 0L. 4m m 3m m 2m m 1m m Om m
m=0.2.4....

for j = 0, 2, 4, ... (2.14)
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(2.15)

where the B~l are determined by

. 4 f1< l l
Bit=(l f» ASlcosj8dO.+ OJ 11: 0

If a finite number of terms in the fourier series is taken, equation (2.14) might con­
ceivably be solved by an iterative process. First calculate B~l by using an approximate
solution (usually the elastic solution is taken for the first try) and solve the equations by
Potters' method [13], which is described in Appendix A. Then with the new approximate
solution recalculate the B~l by formula (2.15) and solve the equations again. Continue the
process until, hopefully, the solution converges.

For n large or when many terms are taken in the fourier series, this iterative procedure
is usually found not to converge. A more efficient iteration technique, to be described next,
has to be employed.

Recall Newton's method. Let G(P) = 0 be the governing equation, and suppose that F
is an approximate solution. Then a better solution is

F* = F+f>F
where f>P is obtained from the equation

f>G(F) = - G(F).

Continue the process until f>F becomes sufficiently small.
Now write equation (2.12) as

G(P) = clL l +clL2+C3L3+C4L4+CsLs+C6L6 = 0

where

L 1 = 2(x4F"" +2x3F'" Xl F" +xF' - 2xF'" +4P" +p .... +2x2F"")

L l = 2x2 p -3x3F' +2x4F" -x2F'

L 3 = 4x4F'" +x3pit - 2xl F' +4x2F'" +2xF - 4xP"

L4 = 2(2xl F'" - 3xF" +SF +2F")

L s = 2F+2F' -x1F"

L6 = 6(x2F" - xF).

Then the equation corresponding to equation (2.16) is

c1f>L l +clf>L1+C30L3 +c4 f>L4 +csf>Ls+c6f>L6

+Llf>C1+L2(jCl +L3f>C3+L4<>C4+Ls(jcs+L6oC6 = -G.

Carry out all the variations, and this equation can be written as

(2.16)

d1f>F"1t +d2(jF'" +d30F"" +d4oF" +dsDP'" +d6(jP"" +d7 f>P' +d8oF" +d90F'"

+dlOf>P'''' +d11f>F +d12f>F +d13DF' +dl4f>F" +dlSDF''' - G (2.17)

where the d's are given in Appendix B. Let

f>F = L f>!m(x) cos mO.
m=O.2.4....
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Equation (2.17) becomes

L (a4m 1Jr::.' + a3m 1Jf'::. + a2m 1Jf~ + aim 1Jf'", + aOm 1Jfm) = - G
m=O.2,4•...

where

(2.18)

a4m = dl cos mO

a3m = d2cos mO md3sin mO

a2m = d4 cos mO-mds sin mO-m2d6 cos mO

aIm = d7 COS mO-mds sin mO-m2d9 cos mO+m3dlO sin me

aOm = dll cos me-md12 sin mO-m2d13 cos mO+m3d14 sin mO+m4d1S cos mO.

The quantities asl , G are even functions of 0, and can be represented by cosine series as

ast = L b!1 cos jO
j=O.2,4, ...

G = L Gi cosjO.
j=O,2,4•...

Substitute into (2.18), and let the coefficient ofcos jO equal zero. A set ofordinary differential
equations is obtained as

L (~m 1Jf'::.' +~m 1Jf'::. + ~m 1Jf~ + b{m 1Jf'", + b(.,m 1Jfm) = - Gi for j = 0, 2,4, ... J
m=O.2.4•...

(2.19)

where the b!1' Gj are determined by

. 4 f"/2
lY.t = (1 1J) aSI cos jO dO+ OJ 1t 0

. 4 f"/2
GJ = (l 1J) G cosjO dO.+ OJ 1t 0

Calculate b!1' Gi by using an approximate solution

F = L fm(x) cos me
m=O.2,4, ...

and solve for 1Jfm by Potters' method. Then a better solution is

F* = L f:(x) cos mO
m=O.2,4•...

where

(2.20)

Recalculate b!1> Gi, and solve the equations again. Continue the procedure until bfm becomes
sufficiently small.

It may be noted that for the calculation of the B~I' b!1> Gi, it is very difficult to obtain
analytic values, unless only one or two terms are taken in the fourier series. Instead,
numerical values were calculated from the integral formulas (2.15), (2.20) at each mesh
point used in the Potters' method.
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If the loading is pure shear applied at infinity, it is convenient to expand F in the sine
senes

F = L fm(x) sin mO.
m=1.6.IO.

Then the expressions of the ASI in equation (2.13) are

A 1m x1[{ - 2c l (1 +2m1)+2C1X1+C3X- C5} sin mO +4mc4 cos mO]

AIm X[{2(C1 -c3x)(1 +2m1)- 3C1X1} sin mO +6m(c6x -C4) cos mO]

Aom [2clm1(ml-4)+clx1(2+m1)+2c3x(l +2m1)+2c5(l-m1)] sin mO

+ [2c4 m(5-2m1)-6c6xm] cos mO

which, again, can be represented by

ASI = L B;lx) sinjO.
j=1.6.10....

Similarly, the expansions of of, asp G in Newton's method are

of = L ofm(x) sin mO
m=1.6.10....

ast = L b;t sin jO
j= 1.6.1 0 ....

and

G = L Gi sinjO
j=1.6.10....

where the ast are given by

a3m = d1 sin mO +md3cos mO

a1m = d4 sin mO +md5 cos mO - m1d6 sin mO

aIm = d7 sin mO+mds cos mO-m1dgsin mO-m3dlO cos mO

aOm = dll sin mO+md12 cos mO-m1dl3 sin me-m3dl4 cos mO+m4 dl5 sin me

(2.2] )

and the d's are the same as before.

(b) Plane strain. Equations (2.9) and (2.11) can also be solved by the method just des­
cribed above. In equation (2.9), the approximate value ofSin each iteration may be obtained
from expression (2.10) with the use of the previous Sfor the value on the right hand side. In
the present study, only equation (2.11) is considered for the case of pure shear loading. In
this case, the expressions for the Ast and d's are given in Appendix B.
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3. STRESS CONCENTRAnON AT A CIRCULAR HOLE IN AN INFINITE PLATE
SUBJECTED TO LOADS IN ITS OWN PLANE

Plate with a hole in pure tension

(a) Governing equations and boundary conditions. The loading related to the polar co­
ordinates is shown in Fig. 1. Assume that the strain is small and the thickness of the plate
remains constant during deformation. The stress components transverse to the plate are
assumed negligible, and so the stress field in the plate is approximated by a state of plane
stress. Then equation (2.6) is the governing equation for A. finite and equation (2.8) is for A.
infinite.

From the symmetry conditions, the modified stress function is in the form

F = L fm(x) cos mO.
m=0.2.4•...

The boundary conditions at the hole are

or

and the stresses at infinity are

These give

2F(1)-F'(1)+F"(1) = 0
F"(l) - F(l) = 0

Sr = 1<1 +cos 20)

S/I = 1<l-cos 20)

Sr/l = -hin 20.

(3.1)

F(O) = i-i cos 20. (3.2)
In order to obtain the second boundary condition at x = 0, rewrite equation (2.3) as

" , ~_,. _ -e;' +2e;/I
xe/l +er+U>r/l - .

x
At x = 0, -e;' +2e;/I = 0; so this gives

e~"(O) + e~(O) = O.

But since er has the form er = Lm= 0.2.4•... hm(x) cos mO, it follows that

e~(O) = O.

Hence, from the stress-strain relation (2.5), we have

F'(O) +F'''(O) = O.

Again, F has the form F = Lm= 024 fm(x) cos mO; so the second boundary condition at
infinity is . . ....

F'(O) = o. (3.3)

It is noted that the boundary conditions (3.1) only give one condition for fo(l), and the
second condition is obtained by letting fo(l) equal an arbitrary constant.

(b) Results and discussion. Equation (2.6) [or (2.8) for A. = 00] with boundary conditions
(3.1), (3.2) and (3.3) was solved by Newton's method described in Section 2. Calculations
were made for values of n = 3,5 and 9. Depending on A. and n, from three to six terms in
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the fourier series (with the same number of terms for the expansions of bF and asl) were
found to be needed for satisfactory convergence. Convergence was considered to be
satisfactory, if the difference of the results for the stress concentration factor was less than
1 per cent when an additional term was added.

The results for stress concentration factors determined as K = [(a8)a,"/2]/a", are shown
in Fig. 6 as plots of K against Afor A < 1 and against 1/Afor A > 1. The limiting result for

/'
/'

/'

50 0=3

9

FIG. 6. Variation of stress concentration factor with applied stress.

n = 00, corresponding to an elastic-ideally plastic material was obtained by assuming
that the maximum stress at the hole is 3a", until a", reaches !a1 and thereafter remains at
the value al' Thus, foda1 < a", < a1 the stress concentration factor is K = 1/A. It may be
noted that a", can not exceed a1 for an ideally plastic material. The dashed lines shown in
this figure connect points of constant [(88)a,1</2]/81' where 81 is the nominal yield strain
associated with a1; that is 81 = 10/7 aI/E. Since the stress state at the hole is uniaxial,
[(88)a,,,/2J/81 is obtained simply from the Ramberg-Osgood relation (2.1) as

(88)a,"/2 = O,7AK +0·3(AKt.
81

(3.4)

Figure 7 shows the stress history at the point of the maximum stress (i.e. at () = n/2,
r = a).

Figures 8(a)-10(b) show the distributions of a8 and {J along () = n/2 for A = 0·3, 0·8
and 00. It is interesting to note that the maximum stress a8 no longer occurs at the hole
when the deformation becomes large; but the effective stress still attains its maximum
at the hole.

A typical distribution of {J in the plastic range is shown in Fig. 11(a) wherein contours
of constant values of {J are plotted for the case n = 9 and A = 0-8. For comparison, similar
contours are shown for the elastic case in Fig. 11(b). A detailed stress distribution for
A = 0·8 and n = 9 is given in Table 1.



Theoretical study of stress concentrations at circular holes and inclusions in strain hardening materials 163

3,...-------,,.--------,-----,

2

FIG. 7. Stress history at the point of maximum stress.

In order to check the acceptability of the J 2 defonnation theory, the stress paths at
various points along 8 = nl2 (which appear to deviate the most from proportional loading)
for n 3 and n = 9 are shown in Figs. 12 and 13, respectively. These plots show that the
stress paths depart only slightly from a radial direction by amounts which are well within
the pennissible range given by the criterion of Ref. [12].

It may be interesting to compare the present results with Budiansky and Vidensek's.
They also used the Ramberg-Osgood relation and expanded the stress function into fourier
series, but only two tenns were taken. The comparison of the stress concentration factor is
shown in Table 2. It can be seen that their results agree with our two tenns' results fairly
well.

Plate with a hole in pure shear

(a) Governing equations and boundary conditions. The loading related to the coordinate
system is shown in Fig. 2. As in the case ofpure tension, the usual assumptions ofgeneralized
plane stress are made, with strain assumed small and changes in the plate thickness
neglected. Equations (2.6) and (2.8) are then the governing equation for A. finite and infinite,
respectively.

The modified stress function F is assumed in the form (2.21). The stress components at
infinity are

S, = sin 28

88 = -sin 28

Sr8 = cos 28.

These give

F(O) = -t sin 28. (3.5)
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FIG. 8(a). Stress distribution of ITs along () n/2 for }. = 0·3.

As in the case of pure tension, it can easily be shown that the second boundary condition
at infinity is

F'(O) = O. (3.6)

The boundary conditions at the hole remain as same as (3.1).

(b) Results and discussion. As in the previous case, equation (2.6)[or (2.8) for A = ex,)Jwith
boundary conditions (3.5), (3.6) and (3.1) was solved for values of n = 3,5 and 9. Two to
five terms in the fourier series were found to be needed for satisfactory convergence (on
the basis of the same convergence criterion as in the tension case). The results for the stress
concentration factor defined as K = [(l1e)a.l</4]!tco are shown in Fig. 14. The limiting result
for n = ex,) was obtained by assuming that the maximum stress at the hole is 4t 00 until
too reaches *0'[, and thereafter remains at the value (f[. Thus, for *O'[ < too < 1/J(3)0'[
the stress concentration factor is K = 1/2. It may be noted that too cannot exceed I/J(3)11[
for an ideally plastic material obeying the Mises yield criterion. Again the dashed Hnes in

30

O~ ~
1-0 09 0·8 07 (>6 05 04 03 0-2 0' 0 r

FIG. 8(b). Stress distribution of & along () nl2 for A = 0·3.
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FIG. 9(a). Stress distribution of (18 along (J = n/2 for ,{ = 0·8.

this figure connect points of constant strain [(6/1)0,,,/4]/6/, as obtained from the Ramberg­
Osgood relation (2.1).

The stress history at the point of maximum stress (i.e. at (} = n/4, r = a) is shown in
Fig. 15.

Figures 16(a}-18(b) show the stress distributions of 0"/1 and <1 along (} = n/4 forA = 0-2,
0·7 and 00. As in the pure tension case, the maximum stress does not necessarily occur at
the hole, but the effective stress does reach its maximum at the hole. It is interesting to note
that the effective stress <1 attains a minimum at about r = 2a, which does not occur in the
case of pure tension.

A typical distribution of <1 in the plastic range is shown in Fig. 19(a), wherein contours
of constant values of <1 are plotted for the case of n = 9 and A = 0-7. For comparison,
similar contours are shown for the elastic case in Fig. 19(b). A detailed stress distribution
for A = 0-7 and n = 9 is given in Table 3.

2{)

I
o"'-_~_~_-:-'::_----:""=----='-;-_ ;-_~_",.;;----=-;------:I 5L

09 0·6 0-7 0·6 0·5 0·4 03 0:2 0·' 0 r

FIG. 9(b). Stress distribution of (j along fJ = n/2 for ,{ = 0·8.



166

20

WU-CHENG HUANG

.Q.

09 08 07 06 05 04 03 02 01 0 r

FIG. 100a). Stress distribution of (16 along 0 = nl2 for ). = OCJ.

The stress paths at various points along e= rr./4 (which appear to deviate the most from
proportional loading) for n = 3 and n = 9 are shown in Figs. 20 and 21, respectively.
Figure 21 shows that the stress path at air = 0·6 has a serious deviation from proportional
loading in the range of fj < (J I bounded by the dashed line. But plastic strains are so small
in this range that we may expect the present deformation-theory analysis still give a
reasonable solution to the problem.

4. ON STOWELL'S FORMULA AND NEUBER'S RULE

Stowell's formula

Stowell [9J presented an approximate formula for the stress concentration factor at a
circular hole in an infinite plate under pure tension as

K = 1+2(Es)a.1t/2 (4.1)
(E s)""

,...--------------

2·0

10

FIG. 10(b). Stress distribution of {f along 0 = nl2 for A = w.
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FIG. ll(a). Effective stress distribution for A. = 0·8 and It = 9.
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FIG. lI(b). Effective stress distributions in the elastic range.
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TABLE I. STRESS DISTRIBUTIONS IN A PURE TENSION PLATE FOR n 9 AND ). = 0·8

B
0 n/20 n/IO 3n/20 n/5 n/4 3n/1O 7n/20 2n/5 9n/20 n/2

air

(a) S,
0·0 1·000 0·976 0·905 0·794 0·655 0·500 0·346 0·206 0·096 0·025 0·000
0·1 0·970 0·945 0·873 0·762 0·626 0·482 0·343 0·218 0·117 0·049 0·025
0·2 0·884 0·861 0·792 0·686 0·561 0·440 0·335 0·245 0·167 0·108 0·086
0·3 0·756 0·736 0·678 0·586 0-477 0·380 0·311 0·263 0·223 0,188 0·173
0·4 0·597 ()'584 0·544 0·474 0·389 0·317 0·273 0·259 0·264 0·276 0·281
0·5 0·420 0·417 0·399 0·358 0·304 0·256 0·228 0·234 0·283 0·351 0·384
0·6 0·246 0·249 0·251 0·246 0·227 0·199 0·182 0·207 0·288 0·385 0·430
0·7 0·099 0·100 0·114 0·142 0·158 0·146 0·141 0·187 0·277 0·359 0·390
0·8 -0·007 -0·006 0·012 0·055 0·091 0·099 0·111 0·162 0·231 0·274 0·286
0·9 -0·050 -0·046 -0·030 0·001 0·032 0·054 0·076 0·107 0·136 0·149 0·151
1·0 0·000 0·000 0·000 0·000 0·000 0·000 0·000 0·000 0·000 0·000 0·000

(b) S.
0·0 0·000 ().025 0·096 0·206 0·346 0·500 0·655 0·794 0·905 0·976 1·000
0·1 0·006 0·030 0·101 0·212 0·352 0·507 0·662 0·802 0·913 0·984 1·009
0·2 0·018 0·043 0·115 0·227 0·370 0·528 0·687 0·830 0·943 1·015 1·040
0·3 0·03\ 0·056 0·130 0·246 0·393 0·558 0·725 0·876 0·994 1·068 \·093
0-4 0·036 0·063 0·140 0·262 0·417 0·59\ 0·768 0·930 \·061 1·\44 \·173
0·5 0·021 0·051 0·138 0·269 0·436 0·623 0·812 0·989 1-142 1·252 1·293
0·6 -0·033 0·004 0·106 0·258 0·446 0·651 0·859 1·059 1·242 1·381 1·434
0·7 -0·145 -0·103 0·019 0·210 0·438 0·674 0·912 \·148 \·353 \·491 \·539
0·8 -0·339 -0·290 -0·141 0·099 0·388 0·687 0·979 1·245 1·449 1·557 1·587
0·9 -0·641 -0·573 -0·380 -0·088 0·278 0·679 \·051 \·333 \·501 \·577 \·597
1·0 -1·007 -0·932 -0·712 -0·351 0·137 0·67\ 1·113 1·379 1·503 1·561 1·581

(e) S,.
0·0 0·000 -0·155 -0·294 -0·405 -0-476 -0·500 -0·476 -0·405 -0·294 -0·155 0·000
0·1 0·000 -0·158 -0·301 -()'415 -0·489 -0·515 -0-49\ -0·417 -0·303 -0·159 0·000
0·2 0·000 -0·168 -0·318 -0·438 -0·516 -0·545 -0·521 -0·445 -0·324 -0·171 0·000
0·3 0·000 -0·\79 -0·340 -0-465 -0·545 -0·573 -0·549 -0·474 -0·351 -0·187 0·000
0·4 0·000 -0·191 -0·361 -0·490 -0·569 -0·592 -0·564 -0·491 -0·372 -0·204 0·000
0·5 0·000 -0·199 -0·375 -0·507 -0·581 -0·596 -0·562 -0·486 -0·367 -0·201 0·000
0·6 0·000 -0·196 -0·375 -0·507 -0·574 -0·580 -0·538 -0·450 -0·318 -0·161 0·000
0·7 0·000 -0·179 -0·345 -0·471 -0·535 -0·536 -0·481 -0·372 -0·232 -0·102 0·000
0·8 0·000 -0·147 -0·277 -0·380 -0·443 -0·445 -()'374 -0·256 -0·139 -0·055 0·000
0·9 0·000 -0·091 -0·165 -0·226 -0·273 -0·274 -0·212 -0·124 -0·059 -0·024 0·000
1·0 0·000 0·000 0·000 0·000 0·000 0·000 ().OOO 0·000 ().OOO 0·000 0·000

(d) S
0·0 1·000 1·000 1·000 1·000 1·000 1·000 1·000 1·000 1·000 \·000 1·000
0·1 0·967 0·970 0·977 0·990 1·006 1·020 1·025 1·019 1·008 0·999 0·996
0·2 0·875 0·889 0·924 0·971 1·021 1·063 1·081 1·068 1·037 1·010 1·000
0·3 0·741 0·775 0·857 0·954 1·042 1·109 1·141 1·131 1·089 1·040 1·018
0·4 0·579 0·647 0·793 0·943 1·065 H46 1·187 1·190 J.l53 1·093 1·061
0·5 0·410 0·524 0·739 0·936 1·078 1·166 1·214 1·229 1·211 1-171 1·150
0·6 0·264 0·420 0·685 0·914 1·066 1·158 1·218 1·246 1·253 1·265 1·275
0·7 0·212 0·356 0·607 0·837 1·003 1·112 \·190 1·247 \·302 1·359 1·385
0·8 0·335 0·384 0·502 0·664 0·844 1·003 1·132 \·255 1·369 \·442 1·465
0·9 0·618 0·573 0·464 0·402 0·542 0·807 1·079 1·300 \-441 1·509 1·527
1·0 1·007 ()'932 0·712 0·351 0·137 0·671 1·113 1·379 1·503 1·561 1·581
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FIG. 12. Stress history at fixed points along I.J = nl2 for n = 3.
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FIG. 13. Stress history at fixed points along I.J = nl2 for n = 9.
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TABLE 2. A COMPARISON OF THE STRESS CONCENTRAnON FACTOR

BETWEEN PRESENT RESULTS AND BUDIANSKY AND VIDENSEK

K

Present Budiansky
and

Final Two Vidensek
result terms

.Ie (M = 4)t (M = 2) (M =2)

0·3 2·65 2.73 2·80
n=3 0·5 2·40 2·52 2·60

0·8 2·17 2·32 2-43

(M = 5)
0·3 2·68 2·76 2·80

n=5 0·5 2·24 2·35 2·40
0·8 1·85 1·97 2·00

(M = 6)
0·3 2·79 2·86 2·95

n=9 0·5 2·13 2·24 2·25
0·8 1·58 1·67 1·68

t M is the number of terms taken for the fourier series
expansions.

where K is the stress concentration factor defined as K = [(aO)a,1t/2J/a00' (E.)a,1t/2 is the
secant modulus at the point of maximum stress and (E.)oo is the secant modulus at points
far away from the hole where the stress is applied.

This formula was obtained from an approximate stress distribution which was adjusted
by minimizing the mean square of the error in satisfying the equilibrium equations. There
was no consideration ofthe compatibility equations. This analysis is questionable in several
respects, but Stowell's formula is often used because of its simplicity and good agreement
with many experimental results.

9

n = r:D

-15

FIG. 14. Variation of stress concentration factor with applied stress.
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FIG. 15. Stress history at the point of maximum stress.

A comparison of the stress concentration factors obtained from this formula and the
results presented in the last section is given in Table 4, in which the Ramberg-Osgood
stress-strain curve was used and formula (4.1) becomes

2(1 +~Je"-I)

K = 1+ 1+4}0"-1 K"- I'

It is rather surprising that Stowell's formula gives results that agree so closely with those
obtained by the present analysis.

Formula for the stress concentration factor in a pure shear plate with a circular hole

Following Stowell's derivation for a tension plate, a formula for the stress concentration
factor at a circular hole in an infinite plate under pure shear is obtained in Appendix C as

K = 1+ (~_1)(E.)a,1t/4
.J3 (E.) 00

where K is the stress concentration factor defined as K [(u8)a,1t/4]/U OC' (E.)a,1t/4 is the
secant modulus at the point ofmaximum stress and (E.)", is the secant modulus at infinity.

As mentioned in the previous section, it can be seen that this formula is achieved on the
basis of a treatment that ignores compatibility entirely and satisfies equilibrium in some
average fashion. It is desirable to assess this formula by comparing the results with those
obtained from the previous numerical analysis. Let us reintroduce the stress concentration
factor K [(a8)a,1t/4J/'r"" and use the Ramberg-Osgood uniaxial curve to determine the
secant modulus. Then formula (4.3) becomes

K = _ /3 _ (4 _ /3) 1+~.J(3)"-1 Je"- 1. (4.4)
V V l+~Je" lK" 1
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FIG. 16(a). Stress distribution of (Je along 0 = n/4 for). = (}2"

(4.5)

The results are given in Table 5. It is seen that this formula gives slightly higher results
than those obtained from the numerical analysis, but the difference is small. The formula
is therefore reasonably good for an approximate estimate of the stress concentration factor
in a pure shear plate with a circular hole.

Generalized formula for a plate with arbitrary holes, notches or fillets

Based on experimental results, Hardrath and Ohman [10] generalized Stowell's
formula for arbitrary holes, notches or fillets in a tension plate by rewriting formula (4.1) as

K 1+(K . _1)(Es)maxstress
plastic = elasllc (E') 00

09 08 07 06 05 04 03 0 cO,
~

o r

FIG. 16(b). Stress distribution of ff along e nj4 for;' = 0·2.
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FIG. 17(a). Stress distribution of (18 along (J = n/4 for A. = 0·7.

where Kplastic is the stress concentration factor in the plastic range and Kelastic is the stress
concentration factor in the elastic range.

Similarly, by inserting a corresponding value of Kelaslic for a particular plate under
consideration in formula (4.3), a generalized form is obtained as

K 1 (K 1)(Es)maxslress (46)
plastic = + elastic - (E

s
) 00 •

where the stress concentration is defined as K = (fJmax)/fj 00' This relation includes the
Hardrath-Ohman formula (4.5) for pure tension and is therefore proposed, tentatively,
as a relation between KplaStic and KelaStic not only for a pure tension but also for a pure

4-0,------------------------,

3·0

FIG. 17(b). Stress distribution of {t along {} = n/4 for A. = 0·7.
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FIG. 18(a). Stress distribution of (Jq along (j = nj4 for A = 00.

shear plate with arbitrary holes, notches or fillets. Furthermore, it appears that this formula
may be applicable to other stress states. A test for the case of balanced biaxial tension
plate with a circular hole is shown in Table 6. Here the stress concentration factor K defined
as K = [(<1e)holeJ!l100 is found from the equation

K (4.7)

obtained from formula (4.6) with the use of the Ramberg-Osgood relation. It is seen that
the agreement with the results obtained by Budiansky and Mangasarian [2J is fairly good.

4·0

..i-
T.

30

rl"'3

n.

20

I 0 I....-_~_~_~__~_~ ~~_~_~--.-..-J .ll.
0·9 08 07 06 0-5 04 03 02: 01 0 r

FIG. l8(b). Stress distribution of fJ along (j = nj4 for..t = 00.
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FIG. 19(a). Effective stress distributions for A = 0·7 and n = 9.

On Neuber's rule

By considering a notched prismatic body, obeying an arbitrary non-linear stress­
strain law, and subjected to antiplane shear. Neuber [11] derived a relationship between
stress and strain concentration factors as

(4.8)

FIG. 19(b). Effective stress distributions in the elastic range.
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TABLE 3. STRESS DISTRIBUTIONS IN A PURE SHEAR PLATE FOR n = 9 AND

Ie = 0·7

»\ 0 n/20 n/IO 3n/20 n/5 n/4

(a) S,
0·0 0·000 0·309 0·588 0·809 0·951 1·000
0·1 0·000 0·208 0-496 0·758 0·917 0·972
0·2 0·000 0·121 0·311 0·608 0·826 0·892
0·3 0·000 0·095 0·190 0·385 0·654 0·759
0·4 0·000 0·090 0·149 0·209 0·380 0·520
0·5 0·000 0·098 0·140 0·134 0·088 0·049
0·6 0·000 0·114 0·143 0·114 -0·164 -0·550
0·7 0·000 0·122 0·157 -0·019 -0·429 -0·605
0·8 0·000 0·124 0·055 -0·243 -0·384 -0·413
0·9 0·000 0·034 -0·098 -0·184 -0·202 -0·212
1·0 0·000 0·000 0·000 0·000 0·000 0·000

(b) S.
0·0 0·000 -0·309 -0·588 -0·809 -0·951 -1·000
0·1 0·000 -0·312 -0·592 -0·813 -0·956 -1·005
0·2 0·000 -0·321 -0·610 -0·832 -0·972 -1·021
0·3 0·000 -0·329 -0·631 -0·864 -0·998 - 1-043
0·4 0·000 -0·335 -0·646 -0·899 -1·040 -1·070
0·5 0·000 -0·341 -0·659 -0·931 -1·104 -1·144
0·6 0·000 -0·350 -0·690 -0·990 -1·341 -1·618
0·7 0·000 -0·391 -0·776 -1·289 -1·859 -2·000
0·8 0·000 -0·491 -1·149 -1·862 -2·072 -2·093
0·9 0·000 -0·924 -1·742 -2·045 -2·112 -2·120
1·0 0·000 -1·386 -1·910 -2·059 -2·097 -2·105

(c) S,.
0·0 1·000 0·951 0·809 0·588 0·309 0·000
0·1 1·032 0·982 0·831 0·599 0·314 0·000
0·2 1·066 1·025 0·886 0·637 0·329 0·000
0·3 1·089 1·053 0·939 0·709 0·366 0·000
0-4 1·103 1·072 0·970 0·784 0-447 0·000
0·5 1·114 1:082 0·993 0·829 0·560 0·000
0·6 1·114 1·087 0·994 0·839 0·520 0·000
0·7 1·098 1·060 0·953 0·657 0·159 0·000
0·8 1·013 0·965 0·688 0·227 0·033 0·000
0·9 0·774 0·590 0·232 0·058 0·012 0·000
1·0 0·000 0·000 0·000 0·000 0·000 0·000

(d) S
0·0 1.732 1·732 1·732 1·732 1·732 1·732
0·1 1·788 1·761 1·721 1·712 1·711 1·711
0·2 1·847 1·819 1·736 1·668 1·660 1·658
0·3 1·886 1·864 1·788 1·653 1·574 1·567
0·4 1·910 1·897 1·833 1·698 1·490 1·405
0·5 1·930 1·915 1·872 1·752 1·504 1·169
0·6 1·930 1·929 1·887 1·794 1·554 1·425
0·7 1·903 1·893 1·863 1·713 1·708 1·777
0·8 1·755 1·764 1·675 1·797 1·910 1·920
0·9 1·340 1·389 1·742 1·962 2·019 2·023
1·0 0·000 1·386 1·910 2·059 2·097 2·105
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FIG. 20. Stress history at fixed points along 8 = 1[/4 for n = 3.

where K" and K. are the stress and strain concentration factor, respectively, and K H is
the elastic stress (or strain) concentration factor.

Neuber suggested that this rule may be applicable to other stress states. It is interesting
to examine the validity of this rule for plane stress problems on the basis of the results
obtained in the last section.

Figures 22 and 23 show plots of KuKJK'ft vs. A. for a pure tension plate and a pure
shear plate with a circular hole, respectively, as given by the present results. Since the stress
state at the hole is uniaxial, the values of K. are directly calculated from the Ramberg­
Osgood relation as

for pure tension

and

for pure shear.
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FIG. 21. Stress history at fixed points along 0 = 7[/4 for n 9.

TABLE 4. STRESS CONCENTRATION FACTORS IN A PURE

TENSION PLATE

K

n=3

n = 5

n=9

Stowell Present Neuber
A (M =4)

0·3 2·63 2·65 2·70
0·5 2·38 2·40 2·51
0·8 2·11 2·17 2·21
1·5 1·89 1·94 1·95
CD 1·76 1·80 1·73

(M = 5)
0·8 2·69 2·68 2·75
0·5 2·24 2·24 2·30
0·8 1·82 1·85 1·86
1·5 1·52 1·59 1·55
oc' 1-46 1·52 1·44

(M = 6)
0·3 2·80 2·79 2·82
0·5 2·14 2·13 2·19
0·8 1·58 1·58 1·59
1·5 1·29 1·30 1·26
w 1·28 1·29 1·25



Theoretical study of stress concentrations at circular holes and inclusions in strain hardening materials 179

TABLE 5. STRESS CONCENTRATION FACTORS IN A PURE
SHEAR PLATE

K

Formula Present Neuber
(4.4)

A (M = 3)

0·2 -3·66 -3·62 -3·69
0·4 -3·22 -3·22 -3·31

n=3
0·7 -3·00 -2·93 -3·00
1·0 -2·87 -2·80 -2·85
1·5 -2·77 -2·71 -2·74
ex. -2·67 -2·62 -2·63

(M =4)
0·2 -3·74 -3·69 -3·76
Q.4 -2·96 -2·93 -3·04

n = 5
0·7 -2·52 -2·46 -2·49
1·0 -2-42 -2-34 -2·35
1·5 -2·38 -2·30 -2·31
OCJ -2·37 -2·30 -2·29

(M = 5)
0·2 -3·88 -3·85 -3·89
0·4 -2·82 -2·73 -2·75

n=9
0·7 -2·20 -2-11 -2·12
1·0 -2·15 -2·06 -2·05
1·5 -2·14 -2·05 -2·04
IX; -2·14 -2·05 -2·04

TABLE 6. STRESS CONCENTRATION FACTOR IN ABALANCED BIAXIAL
TENSION PLATE

K

Budiansky
Formula and

A (4.7) Mangasarian Neuber

0·4 1·86 1-82 1·86
0·8 1-70 1-64 1·69

n=3 1·0 1-65 1·57 1·63
1·5 1·57 1·44 1·54
00 1·46 1·36 1-41

Q.4 1·88 1·85 1·88
0·8 1·56 1·49 1·54

n=5 1·0 1-47 1·38 1·43
1·5 1·37 1·23 1·31
00 1·32 1·22 1·26

0·4 1·95 1·94 1·95
0·8 1·45 1·38 1·42

n=9 1·0 1-30 1·22 1·26
1·5 1·21 1·12 H5
00 1·21 H2 1·15
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FIG. 22. Curves of K.KJK~ with A. in a pure tension plate.

Without reference to the present analysis, the stress concentration factor K a can be
found directly from the equations

2 9(1+4)."-1)
K a = 1+4)." 1K:-1 for pure tension

and

for pure shear

obtained from the Neuber rule (4.8) with the use of the Ramberg-Osgood relation. These
equations provide the values of K a (by trial and error) shown in Tables 4 and 5.

It is seen that Neuber's rule gives a slightly higher value of the stress concentration
factor than that obtained from the present numerical analysis when the strain is small,
and gives a slightly lower value when the strain is large. The difference is smaller for the

1.5r----r--~-___r---;--___r--__,_---,r_--.-___,

noS

I I I I I I I I
O.50!:--...,O~.2,...----,o-!-.4-:---0-!-.6,,----!-O.78--,l1.O.,,---..,.J1.2~--:'1.L,4---::1.L,.6----'

X

FIG. 23. Curves of K"KJK~ with t. in a pure shear plate.
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case of pure shear than for the case of pure tension. Generally speaking, this rule gives an
accurate result for the stress concentration factor. It should be noted that in Fig. 22 the
considerably large deviations from the Neuber rule for Jc and n large are associated with
very small differences between the stress concentration factors predicted by the Neuber
rule and the present analysis. The reason is that small increases of stress can produce very
large strain differences when n is not small. Thus, the use of plots like those in Fig. 22 to
assess how well experimental data follow the Neuber rule might be somewhat misleading.

A further test for the case ofbalanced biaxial tension plate with a circular hole is shown
in Table 6 where the stress concentration factor K" is given by

4(1 +lJcn-l)K 2 _ 7

" -1+4Jcn- 1K:- 1 '

This is obtained from the Neuber rule (4.8) with the use of the Ramberg-Osgood relation.
It is seen that the Neuber rule gives a result between those obtained from formula (4.6)
and by Budiansky and Mangasarian.

5. STRESS DISTRIBUTION AROUND A RIGID CIRCULAR CYLINDRICAL
INCLUSION IN AN INFINITE MATRIX SUBJECTED TO TRANSVERSE

LOADING

An i'1finitely long cylindrical inclusion in a matrix under transverse pure shear

(a) Governing equation and boundary conditions. As shown in Fig. 3, the uniform load
applied at infinity is perpendicular to the cylindrical direction, and therefore the body may
be assumed to be in a condition of plane strain. Since the inclusion is rigid, the strain
components in the longitudinal direction vanish, i.e. £z O. Hence the stress function
is governed by equation (2.11) in a power law strain hardening matrix.

On the boundary of the rigid inclusion

U(l) = V(1) = O.

These give the boundary conditions

£1J(1) = 0, whence F"(l)-F'(l)-F""O) = 0
and

which leads to

F"'(1)+[3+4(n-l)]P'''(1)-[3+4(n-l)]F""(l) = o.
For pure shear loading at infinity, the boundary conditions at x = 0 are

F(O) = -t sin 20

F'(O) = 0

and the modified stress function has the form

F = L fm(x) sin mO.
m=2.6.10•...

(5.1)

(5.2)

(5.3)
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(b) Results and discussion. By the method presented in Section 2, equation (2.11) and
boundary conditions (5.IH5.3) were solved for the values of n = 3,5,7. Depending on n,
three to five terms in the fourier series were needed for satisfactory convergence as measured
by a difference ofthe result for the maximum stress less than I per cent when an additional
term was added.

Table 7 shows the stress distributions of all the stress components for n 7. It is seen
that the circumferential stress component (J9 has a very sharp gradient at the points
immediately away from the inclusion, and the maximum effective stress is at 0 = 0, r = a.

The spatial stress distributions of (Jr along e= n/4 and fj along 0 = 0 for n = 3, 5, 7 are
shown in Figs. 24(a) and (b).

An application of these results to the theory of fiber reinforced materials is given in
Ref. [15].

An infinitely long cylindrical inclusion in a matrix under transverse pure tension

For problems under plane strain conditions with ez = 0 in an incompressible material,
the solution for the case under pure tension (see Fig. 4) can be obtained by superposing
the solution for the pure shear case and the solution for the balanced biaxial tension case as
shown below:

In the balanced biaxial tension case, incompressibility forces the stresses to be constant
and the strains to vanish everywhere. The effective stress at each point in the pure tension
body is the same as that at the corresponding point in the pure shear body. Therefore, ifthe
stresses in the pure shear case with loading Sr9 = I at 0 = 0 are

the solution for the case under pure tension with loading Sr 1 at () = 0 is

Sr = -HI +LSrm(x) sin m(8 +n/4)]

S9 = -HI +I S9m(X) sin m«()+n/4)]

Table 8 shows the stress distributions of all the stress components for n = 7. It is worthy
ofnote that the effective stress is symmetric with respect to () n/4 and attains its maximum
at 8 = n/4, r = a.
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TABLE 7. STRESS DISTRIBUTIONS AROUND ACYLINDRICAL INCLUSION UNDER TRANSVERSE PURE
SHEAR FOR n = 7

()

0 n/28 n/14 3n/28 n/7 5n/28 3n/14 n/4
air

(a) S,
0·0 0·000 0·223 0·433 0·623 0·781 0·901 0·975 1·000
0·1 0·000 0·252 0·465 0·638 0·787 0·906 0·979 1·001
0·2 0·000 0·318 0·546 0·692 0·815 0·924 0·991 1·010
0·3 Q.ooo 0·365 0·631 0·786 0·884 0·962 1·018 1·038
Q.4 0·000 0·366 0·675 0·882 0·989 1·040 1·072 1·086
Q.5 0·000 0·349 0·668 0·923 1·086 1·158 1-170 1·167
0·6 0·000 0·343 0·645 0·906 1·125 1·265 1·312 1·315
Q.7 0·000 0·336 0·635 0·888 1-110 1·308 1·458 1·516
0-8 0·000 0-327 0·636 Q.896 1·111 1·327 1·531 1-620
Q.9 0·000 0·343 0-641 0·912 1-173 1·371 1·462 10480
1·0 0·000 0·361 0·636 0·903 1-188 1·316 1·221 1-130

(b) So
0·0 0·000 -0·223 -0·433 -0·623 -0·781 -0-901 -0·975 -1·000
0·1 0·000 -0-222 -0·434 -0·624 -0·782 -0-901 -0-975 -1·000
0·2 0·000 -0-221 -0·432 -0·623 -0-783 -0-903 -0·977 -1·003
0·3 0·000 -0·215 -0·423 -0·614 -0·777 -0·900 -0·976 1·001
0·4 0·000 -0·209 -0·407 -0·589 -0·751 -0·880 -0·960 -0·987
0·5 0·000 -0·206 -0·393 -0·557 -0·702 -0·826 -0·914 -0·946
0·6 0-000 -0·201 -0·387 -0·538 -0·648 -0·737 -0·812 -0·844
0·7 0·000 -0·196 -0·378 -0·526 -0·619 -0·653 -0·650 -0·643
0·8 0·000 -0·192 -0·353 -0-482 -0·562 -0·543 -0·444 -0·385
0·9 Q.ooo -0·143 -0·248 -0·294 -0·273 -0·200 -0·115 -0·077
1·0 0·000 0·361 0·636 0-903 J.188 1·316 1·221 1·130

(c) S,o
0·0 1·000 0-975 0·901 0·781 0·623 0·433 0·223 0·000
0·1 0·990 0·966 0·896 0·779 0·622 0·433 0·222 0·000
0·2 0-965 0·942 0·874 0·764 0·614 0·429 0·220 0·000
0·3 0·944 0·914 0·837 0·729 0·590 00417 0·214 0·000
0-4 0·937 0·899 0·804 0·680 0·542 0·385 0·202 0·000
0·5 0·934 0·899 0·797 0·646 0·483 0·329 0·172 0·000
0·6 0·938 0·907 0·811 0·654 0·462 0·275 0·122 0·000
Q.7 0·957 0·920 0·827 0·691 0·503 0·288 0·112 0·000
0·8 0-977 0·948 0·864 0·736 0·585 00419 0·224 0·000
0·9 1·017 1·008 0·951 0·842 0·740 0·637 0·404 0·000
1.0 1·274 1·256 1·205 1-124 1·007 0·807 0·465 0·000

(d) S/J3
0·0 1·000 1·000 1·000 1·000 1·000 1·000 1·000 1-000
0-1 0·990 0·995 1·002 1·002 1·001 1·002 1·002 1·001
0·2 0·965 0·980 1·002 1·008 1·008 1·009 1·008 1·007
0·3 0·944 0·959 0·989 1·011 1-019 1·020 1·020 1·019
004 0·937 0·944 0·969 1·002 1·025 1·034 1·036 1·037
0·5 0·934 0·941 0·958 0·983 1·016 1·045 1·056 1·056
0-6 0·938 0·947 0·961 0·974 1·000 1·038 1·068 1·079
0·7 0·957 0·958 0·970 0·988 1·000 1·022 1·060 1·079
Q.8 0·977 0·983 0·995 1·008 1·021 1·025 1·012 1·002
0·9 1·017 1·036 1·050 1·036 1·035 1·011 0·886 0·779
1·0 1·274 1·256 1·205 J.l24 1·007 0·807 0·465 0·000
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FIG. 24(a). Stress distribution of (f1 along 0 rr:/4.

6. THE APPLICABILITY OF THE POWER LAW SOLUTION TO STEADY CREEP

For the metals used in structures, the experimentally established steady creep law is
often taken in the form

i; = k<1n (6.1)

where i; is the tensile strain rate caused by uniaxial tension <1 and k, n are constants obtained
from constant temperature creep tests.

09

Q

r

3

09
o 8 L-._~-~-~-~--::-,::._--=,, --c:-';:""----:-:---------;O,":------;;'

I

FIG. 24(b). Stress distribution of 11 along 0 = O.
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The generalized steady creep law for polyaxial stresses proposed by Odqvist [16] which
reduces to (6.1) in simple tension is

. 31.",n- 1s
£ij = 2/W ij

where Bij are strain rates, and Sij are stress deviators defined as

Sij = O'ij-!JijO'kk

and ft is the effective stress given by

(6.2)

ft = J(~SijSij)'

The analogy with the simple power-law deformation theory of plasticity is clear.
Therefore, the solutions of the limiting case A. = 00 presented in the previous sections
also provide the steady creep solutions for the stresses in the corresponding problems.

7. CONCLUDING REMARKS

For an elastoplastic analysis of a plane problem with an infinite region exterior to a
circular boundary, the present method involving fourier series and finite difference appears
to be useful and accurate. Comparisons of numerical results show that the generalized
Stowell formula presented in this paper and the Neuber rule provide reasonably accurate
plastic stress concentration factors for plane stress problems under pure tension, pure
shear and balanced biaxial tension. These two rules may also be applicable to other loading
conditions.
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APPENDIX A

Polters'method
For the sake of completeness, a brief description of Potters' method [13] used in the

present analysis will be given here.
Rewrite the set of fourth order linear differential equations (2.14) or (2.19) in the form

M
\-, (_i /11/ + j 11/ + j /I + __ i I + j ) __i
L.. "'"4mqm e3mqm e2mqm t:"lmqm eomqm - r.
m

Let q';" = Pm and with the use of the central difference formula (with equal mesh points,
i = 1, 2, 3, .. _N), equation (AI) can be written in the matrix form as

where

Pu

2,3, ... N-l (A2)

R is a column vector and A, B, C are 2M x 2M coefficient matrices. In the application of
Potters' method, a vector P and a matrix Q are introduced by writing

i = 1, 2, 3, ... N. (A3)

(A4)

Substitution in (A2) leads to the recurrent relations

Pi + 1 = (Ai+IQi+Bi+tl-I(Ri+I~Ai+IPJ

Qi+l = -(Ai+1Qi+ B i+l)- ICi+1

i = 1,2,3, .. _N - 1.

Similarly, write the boundary condition at x = 1 in the form

SYN-l +TYN+ WYN+I = k (A5)

where S, T, Ware again 2M x 2M matrices and an (N + l)st mesh point has been introduced
to permit a central difference representation of derivative on the boundary x = 1. With the
use of (A3), the value of Y for (N + 1)st mesh point is

YN+l = (SQN-IQN+ TQN+ W)-I(k-SQN_IPN-SPN_I - TPN) (A6)

while the boundary conditions at x = 0 provides the knowledge of PI and QI_ Thus, the
equations are solved as follows:

First from (A4) we obtain P;, Qi for i = 2,3, .. _Nand YN+ I is calculated by (A6).
Then by using (A3) we obtain Yi for i = 1,2,3, .. _N.
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APPENDIX B

Coefficients of equations (2.13) and (2.17)

(a) Plane stress. The d's in equation (2.17) are

d 1 = 2CIX4+x2H3(2S9-Sr)

d2 = 4C l X
3 +4C3X4 +x2H2(2S8-Sr)+x2H6(2S~- S~)+xH3( -4Sr+4xS~+5S8-2xS~)

d3 = 6xH3Sr9+x2H6(2S9-Sr)

d4 = -2CIX2 +2C2X4 +C3X3 -csx2+x2H 1(2S9-Sr)+xH2(-2Sr+2xS~+S9-XS~)

+ x2H 4(2S~ - S~) + xH3( - 4S~ + 2xS~ + 2S~ - xS;) + x2H s(2S~' - S~')

+ xH6( - 2S~+ 2xS~' - xS~· + S~)

d s = 4C4X2+6xH2Sr9 +X2H 4(2S8- Sr)+6H3(Sr9+ 2XS~8)+ x2H s(4S~- 2S~)

+xH6(-2Sr+2xS~+S8-XS~+6S~8)

d6 = 4C I X
2 +H3(2Sr-S8)+x2H S(2S9-Sr)+6xH6Sr8

d7 = 2c l x- 3C2X3-2C3X2-3xHIS9+Hz{2Sr-S8 -3xS~)-3xH4S~-3xHsS~·

+ H 3(4S~ - 3xS~ - 2S~) +H 6(2S~ - 3xS~ - S~)

ds = -6c4x+6c6X2+6Sr9xH I +6XS~8H2 +6XS;8H 3 +XH4(6S~8- 3S9)

+ xH s(6S~~- 6S~) +H 6(2Sr- 3xS~ - S8 + 6xS~~)

d9 = -4c1x+4c3X
2 +H2(2Sr-S8)+6xSr8H4 +H3(4S~-2S~)

+ xH s( 12S~8 - 3S9)+H 6(2S~ - S~ + 6XS~8)

diG = 6xHsSr8+H6(2Sr-S8)

dll = 2C2X2 +2c3x+2cs +2H1(Sr+S8)+2H2(S~+S~)+2H4(S~+S~)+2H3(S;+S~)

+ 2Hs(S~' + S~') + 2H6(S~' + S~)

d l2 = lOc4 -6c6x-6Sr8H 1 -6S~8H2 +2H4(Sr+ S9- 3S~8)

- 6S;8H3+ H s(4S~ + 4S~ - 6S~~) + 2H6(S~+ S~ - 3S~~)

d13 = 8cI -C2X2 -4c3x+2cS +H 1(2Sr-S9)+H2(2S~-S~)+H4(2S~-S~-6Sr8)

+ H 3(2S; - S~) + H 6(2S~' - S~· - 6S~9) + H s(2Sr+ 2S;' + 2S9- S~· -12S;9)

d 14 = 4C4+H4(2Sr-S8)+Hs(4S~-2S~-6Sr8)+H6(2S~-S~)

diS = 2c I +Hs(2Sr-S8)

where for A. finite

HI = t(n-l)p[t(n - 3ilin - 5)~t(n-7)~'2L 2+t(n - 3)~t(n- S)~"L2 +!(n - 3)~t(n- S)~'L3

+!(n- 3)~t(n-S)~'L4+!(n- 3ilin - 5)~t(n-7)~'2L s +!(n- 3)~t(n-S)~"Ls

+!(n - 3ilin - 5)~t(n-7)~'~'L6 +!(n- 3)~t(n-S)~"L6+~t(n-3)LIJ
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H 2 = 1(n-1)p[(n - 3)s!(n- S)S'L2+s!(n-3)L3+1(n - 3)s!(n- S)S'L6]

H 3 = 1(n-1)ps!(n-3)L2

H4 = 1(n -1)p[s!(n- 3)L4+(n- 3)s!(n- S)S'L s+1(n - 3)st(n- S)S'L6]

H s = 1(n-1)ps!(n-3)Ls

H6 = 1(n-1)ps!(n-3)L6

for Ainfinite

H 1 = 2SL 1+1(n-1)(S"L2+S'L3+S'L4+S"Ls+S'"L6)

H 2 = 1{n-1)[(n-3)S'L2+SL3+1(n-3)S'L6]

H 3 = 1(n-1)SL2

H4 = 1(n -1)[SL4+(n - 3)S'Ls +1(n - 3)S'L6]

H s = 1(n -1)SLs

H6 = 1(n-1)SL6"

(b) Plane strain (A infinite). The A's in equation (2.13) are

A 4m = C1X
4 sin me

A 3m = 2x3(C 1 +xc3) sin me

A 2m = x2[{ - C1(1 +2m2)+X2C2 +XC3 - cs} sin me +2mc4 cos me]

A 1m = X[{C1(1 +2m2)-x2c2 -xc3(1 +2m2)+cs} sin e+m(4xc6-2c4) cos me]

Aom = [c1(m4-4m2)+x2c2m2+3xc3m2 - csm2] sin me + [c4(4m - 2m3)- 4xc6m] cos me

where

C1 = S2

C2 = 1(n-1)[1(n- 3)S'2 +SS"]

C3 t= 1(n -1)SS'

C4 = 1(n -1)SS'

Cs = 1(n-1)[1(n-3)S·2+SS"]

C6 = 1(n -1)[1(n - 3)S'S' +SS'"].

The d's in equation (2.17) are

d 1 = C 1x 4 +H 3SX2

d2 = 2C1X3+2c3X4+H2SX2+3H3SX+2H3S'X2+H6S'X2

d3 = 2H3Srr?'+H6SX2

d4 = -C1X
2 +C2X4+C3X3-csX2 +H lSX

2 +H2Sx+H2S'X2+H3S"X2+2H3S'x

+ H4S'X2 +H sS"x2+H 6S"X2 +H6S'X
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d5 = 2C4X2+2H2SrOX +2H3SrO +4H3S~OX+H4SX2 +2H58'X2+H 6SX +2H6S~OX+H 68'X
2

d6 = 2C1X2 -H3S +H5SX2+2H6SrOX

d7 = C1X-C2X3_C3X2+C5X-HIXS-H2S-H2S'X H 3S"x-2H3S'

-H4S·x-H5S··x H6S'·x-H6S·

dB = -2C4X+4c6X2+2H1SrOx+2H2S~Ox+2H3S;OX H4Sx+2H4S;ox

+ 2H5S~~X - 2H5S'X - H6S +2H6S~~X - H 6S'X

dg = -2C1 X+2C3X2-H2S-2H3S' +2H4S rOx-H5Sx+4H5S~eX-H6S'+2H6S~eX

d10 = 2H 5SreX- H 6S

dll = 0

d12 = 4c4-4c6x-2H lSr8 2H2S~8-2H3S;8-2H4S~8-2H 5S~~-2H6S~~

d13 = 4CI-C2X2 3C3X+C5-H1S-H2S'-H3S"-2H4SrO

- H4S' - H 5S" 4H 5S~O - H6S'· - 2H6S~8

d14 = 2C4-H4S-2H5Sr8-2H5S'-H6S'

where

S = 1(S8 - Sr)

H 1 = 2SL1+!<n-lj(S"L2+S'L3+S"L4+S"L5+S'"L6 )

H 2 = 1(n -l)[(n - 3)S'L2+SL3+!(n - 3)S'L6 ]

H 3 = 1(n-l)SL2

1 i'f - 1 -H4 = 1{n-l)[.)L4+(n-3)S'L5+1{n-3)S'L6J

H 5 = !(n-l)SL5

H6 = 1(n-l)SL6

and

L 1 = x4F"" +2x3F'" _x2F" +2x2F"·· +xF' -2xF'·· +4Y' +F····

L4 = 2x2F"· - 2xF'" +2Y" +4Y
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APPENDIX C

Derivation by Stowell's method of stress concentration factor at a circular hole in an irifinite
plate under pure shear

Assume that the stress field in an infinite plate with a circular hole under pure shear is

(
4a2 3a4

)
ar = Ga 00 1-7+7 sin 20

(
3a4)

a9 = - Ga 00 1+7 sin 20

(
2a2 3a4

)
arB = Ga oo 1+7-7 cos 20

where G is a function of Es/(Es)oo' Here Es is the secant modulus at any point and (Es)oo
is the secant modulus at infinity. For the elastic case, E s is constant everywhere and (Cl)
gives the elastic solution when G = 1, therefore G(I) = 1. On the other hand,for the material
getting very plastic the stress concentration factor defined as [(U)a,1t/4]/U 00 must reduce to
unity, hence G(O) = .,)(3)/4 when [(Es)a,1t/4]/(Es)00 --+ O. This stress field satisfies the boundary
conditions both at the hole and at infinity.

Now the equilibrium equations are

a~+r - 1a~B +r - 1(a r - aB) = 0

r-la8+a~B+2r-larB = O.

When the assumed stresses are substituted into these equations, the results are

+(1+2~2-3~4) cos 20((;)J ']d[E~~s)oor
According to Stowell's arguments, the error in the satisfaction of these equations is
proportional to

dG

and it is desired that the mean square of the error be made a minimum; that is
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should be a minimum. The calculus ofvariations for this expression gives the Euler equation
as

d [ dG ]
- d[EsI(Es)ooJ 2d[Es/(E500J = 0

and from which

Here C1 and Cz are constant, which can be determined by the conditions G(1) = 1 and
G(O) = .)(3)/4. Hence

and the stress concentration factor is

R = (0-)a,lt/4 = 1+(~_1)(Es)a,lt/4.
0- 00 J3 (Es)00

(Received 2 February 1971; revised I July 1971)

A6cTpaKT-Me-ro,aOM, laJ(n10'ialOutHM pll)!,bl Ij>ypbe H J(OHe'iHble palHIiL\bl, pewalOTClI laAa'ili HeJlime­

iiHblX J(paeBblx YCJlOBliii 6ecKOHe'iHO ynpyro-nnaCTH'iHOii nnaCTHHKH C KpyrJIbiM oTsepcTHeM, nOJl,BepllCeH­

Hoii Jl,eikTBHIO 'iflCTOrO pacuIllCeHHlI H 'iHCTOrO CABHra S 6ecKOlfe'iHOcTH. Ha OCHose 3THX pewelfHii.,

HccneAyeTclI BallClfOCTb lajlHCHMOCTH Heii.6epa, MellC)!,y Ij>aKTopaMH J(OlfueHTpaUHH HanpllllCeHHii H lleIj>op­

MaUHH, lIJ11I lalla'i B nnOCKOM HanplIlICeHHoM COCTOllHHH. npeAlIonoraeTclI o606uteHHall Ij>oPMyna CTonenMa

llnll Ij>aKTopa KOHueHTpaUHii HanplIlICeHHii B 3alla'iaX, B KOTOpblX IITHnOllCeHHalI Harpy3Ka MOllCeT 6blTb KaK

'iHCTbIM CJl,SHrOM, TaK H '1HCTbIM pacTlIlICeHHeH, HnM )!,anee, )!,pyrIiMH COCTOlIHHlIMH HanplIlICeHIii:i. nyTeM

3Toro lICe caMoro MeToAa, IIonY'ialOTClI pacnpeAeneHHlI HanplIlKeHHH BOKpyr lKeCTKoro, Kpyrnoro, UIinHH­

llPH'iecKoro BKnlO'ieHHlI, HaXOlllluterOClI B 6eCKOHe'iHoi:i, lKeCTKo-nnaCTH'ieCKoii. MaTpIiue, nOAseplKeHHoii

paBHoMepHoMy C)!,BIiry Ii paCTlIlKeHHIO.


