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THEORETICAL STUDY OF STRESS CONCENTRATIONS AT
CIRCULAR HOLES AND INCLUSIONS IN
STRAIN HARDENING MATERIALSY

Wu-CHENG HUANG

Harvard University, Cambridge, Massachusetts

Abstract—Nonlinear boundary value problems of an infinite elastic—plastic plate with a circular hole subjected
to pure tension and pure shear at infinity are solved by a method involving fourier series and finite difference.
On the basis of these solutions, the validity of Neuber’s relationship between the stress and strain concentration
factors for the plane stress problems is examined and a generalized Stowell formula for the stress concentration
factor is proposed for problems in which the applied loading may be pure shear as well as pure tension and,
furthermore, other stress states. By the same method of solution, the stress distributions around a rigid circular
cylindrical inclusion embedded in an infinite rigid—plastic matrix subjected to uniform transverse pure shear and
tension are obtained.

1. INTRODUCTION

THEORETICAL studies of stress concentrations around structural discontinuities in an elastic
material have been made for a wide variety of cases, but few corresponding studies for
strain hardening materials have been made. A number of authors have considered one
dimensional plastic problems, such as an infinite plate with a circular hole under uniform
radial load [1-4] and a circular cylindrical inclusion embedded in an infinite matrix
subjected to uniform transverse radial stress [5]. The only two dimensional strain-hardening
problem (i.e. with stress varying in two space coordinates) which has been well investigated
is an infinite plate with a circular hole under pure tension [6-8]. _

In the present study, three two dimensional problems are investigated. Due to its
importance and for the sake of comparison with earlier work, the elastic—plastic plate in
tension with a circular hole (see Fig. 1) is considered first and followed by the problem of
an infinite plate with a circular hole subjected to pure shear at infinity (see Fig. 2). This
latter problem is relevant to such engineering structures as a thin-walled hollow beam
with a small circular hole under torsion and the web with holes in an I beam subjected to
severe transverse shearing load. As a first attempt to understand the stress concentration
around a fiber in a fibrous reinforced composite, analyses of the stress distribution around
a rigid circular cylindrical inclusion in an infinite matrix subjected to uniform transverse
pure shear and tension (see Figs. 3 and 4) are made. Here the study is restricted to a rigid—
plastic matrix with a power law strain hardening material.

Stowell [9] presented an approximate formula

(ae)a,n/Z — 1+2(Es)a,n:/2

K =
Too (Eds
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FiG. 1. Circular hole in an infinite plate subjected to pure tension.
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F1G. 2. Circular hole in an infinite plate subjected to pure shear.
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F1G. 3. Cylindrical inclusion in an infinite matrix subjected to transverse pure shear.
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Fi1G. 4. Cylindrical inclusion in an infinite matrix subjected to transverse pure tension.

for the stress concentration factor K in a plate with a circular hole (see Fig. 1) subjected
to pure tension; here E, means the secant modulus. Based on experimental results,
Hardrath and Ohman [10] generalized this formula for plates with arbitrary holes, notches
and fillets under pure tension as

(E s)max stress
(E S) w

Neuber [11] obtained a relationship between stress and strain concentration factors,
namely,

Kplastic =1 +(Kelastic_ 1)

KK, = K%

by considering a notched prismatic body under antiplane shear; here Ky is the elastic
stress concentration factor. In the present study, based on the results of our analysis the
validity of the Neuber rule for plane stress problems is examined and a generalized Stowell
formula is proposed for problems in which the applied loading may be pure shear as well
as pure tension and, furthermore, other stress states.

2. THE BOUNDARY VALUE PROBLEMS

Introduction

All the problems which are studied in this paper are concerned with two dimensional
boundary value problems consisting of an infinite region exterior to a circular boundary.
The ability to perform a plastic analysis of this kind of boundary value problem has been
limited because of the uncertain stress—strain relation and the nonlinearity of the governing
equation. The only stress-strain relations which have been used in the past to solve such
problems are the simplest deformation theory of plasticity and the simplest incremental
theory of plasticity. The use of a deformation theory in the solution of boundary value
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problems requires much less work than the use of a corresponding incremental theory,
but it has often been criticized on the grounds that deformation theories are physically
unsound except for the case of proportional loading. It is shown in Ref. [12], however,
that deformation theories of plasticity may be used for a range of loading paths other than
proportional loading without violation of general requirements for the physical soundness
of a plasticity theory.

In view of this, the J, deformation theory is employed in this analysis, and the accept-
ability can be justified by examination of the results by the criterion established in Ref. [12].

Because of the nonlinearity introduced by the constitutive equations of plasticity,
finding the exact solution of boundary value problems is virtually hopeless, except for one
dimensional problems. Approximate methods that have been employed are the Rayleigh—
Ritz method [6], the finite element method [8] and the finite difference method [7]. In this
section, a method involving fourier series and finite difference is presented. The governing
equations, based on J, deformation theory and the Ramberg—-Osgood stress—strain relation,
are formulated in terms of a stress function for both plane stress and plane strain (under
the restriction of no unloading). By taking advantage of the geometry, the solution is
expanded into fourier series in the circumferential direction and the fourier coefficients,
which are functions of the radial coordinate only, are determined by a finite difference
method. Here the Potters’ method [13] is employed.

Ramberg-Osgood uniaxial stress—strain relation

Ramberg and Osgood [14] suggested that the uniaxial stress—strain curve for a variety
of structural materials can be described by the formula

o 3o\ !
g =

where ¢ and ¢ are the uniaxial stress and strain, respectively. Here E is the elastic modulus,
and n is a parameter chosen to provide the best fit to the stress-strain curve of a particular
material under consideration. The nominal yield stress 6; may be interpreted in either of
two ways. It may be considered as an arbitrary parameter providing for a best fit or it is
equal to the value of the stress at which the secant modulus E; is equal to 0-7 E. Figure §
shows plots of ¢/0, vs. Eg/o, for several values of n.

It may be noted that this relation gives the elastic relation ¢ = ¢/E for ¢ « ¢, and gives
the pure power law relation ¢ = ko” for ¢ » a,.

J, deformation theory of plasticity
Based on the simplest total deformation theory of plasticity and the von Mises yield
criterion, the strains are related to the stresses by

1+v v 3f1 1
& = E G;j_E(Sijﬂ'kk“FE(E—'E) Sij (2.2)

where v is the Poisson’s ratio, E is the secant modulus of the uniaxial stress—strain curve
at the effective stress given by

6= \/(%Sijsij)
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F1G. 5. Nondimensional Ramberg-QOsgood stress-strain curves.

and §;; is the stress deviator defined by
S = Gij”‘i%dkk(sif-

Any solution must, of course, be checked to insure that & at every point is non-decreasing
(i.e. there must not be unloading). Furthermore, it is desirable to examine the extent of the
deviation of the stress path at every point from proportional loading by the criterion of
Ref. [12] in order to make sure that the use of deformation theory does not violate basic
requirements of the theory of plasticity.

Governing equations

In either generalized plane stress or plane strain, equilibrium is insured for all stresses
derived from a stress function ¢ by

O =TI, Gy = ¢ G =1 i

where r, 8 are cylindrical coordinates and ( ) = d/0r,( ) = 0/66.
The strains must satisfy the compatibility equation

(reg)’ +r tey — g, —2r Ye,or) = 0.

In plane stress, the stress components acting on the plane parallel to the plate are
neglected. The effective stress 1s therefore

a 2
8* = 62 +05—0,0,+30%
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while the strains are given, by (2.2), as
1 1 1 1
& = E(Ur“’ﬂo)'*‘ E E 9, %%

_ 1( va,)+ l 1 1
&g = P 0y— Vo, EE Oy 20‘,
_1+v 341 1
8r6 - E Jr0+2 Es E Gro'
L ab 3
E, E Mo, ’

if the Ramberg-Osgood formula is used.
With the introduction of the non-dimensional quantities

Here

c o) G é
S, =—, Saz_l, Sro__"’, §=—
c 3 a
A="2 p=22"1  x=-_, F=xzi
o, 7 r Ow
the compatibility equation becomes
x2ey & +xe,—26,+2xe,, = 0 (2.3)

where () = 0/0x, () = 0/00, the stress components in terms of the modified stress
function F are
S, =2F—xF'+F"

Sy = 2F —2xF'+ x*F" (2.4)
Sro = xF,.—F'
and the stress—strain relations are
Oy 1 1 1
g, = F(S,'— VSg)"'O'w(Es““E‘) (S,—ESG)
O 1 1 1
gy = E(Se_vsr)"'aoo(is'_f) (So—ESr) (2.5)

o 3 1 1
= 21+ WS, +=0,[——=]S
&g E( +V) r0+26w(Es E) ré

where

1 1 .
—:—1 n—l,
E. E( +pS"7)
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It may be noted that the infinite region exterior to the circular boundary has been trans-

formed into a unit circle.
Substitution of equations (2.4), (2.5) into equation (2.3) gives the following governing
equation in terms of the modified function F:

(L+pS" H(2x*F" +4x3F" — 2x*F" + 4x?F"" 4+ 2xF' — 4xF'" +8F "+ 2F ")
+p[(8"~ Y(@x*F" + x3F" — 2x*F' +4x?F"" + 2xF —4xF")
+(8" Y(@AxEF" —6xF" 4+ 10F +4F ")+ 6(3"~ )" (x2F" — xF’)
+(8" Y(2x2F = 3x*F 4+ 2x*F" — x*F")+ (8" )"QF +2F " —x?F")] = 0 (2.6)
where
S = (S2+52-5,5,+38%

For p— 0 or n = 1, this equation leads to the homogeneous linear partial differential
equation

X F" 4253 F" — x*F" 4+ 2x*F"" 4+ xF' = 2xF" +4F " +F™ = 0 2.7

which is the governing equation for the elastic solution. On the other hand, for p - «©
equation (2.6) can be reduced to

S2Q2x*F™ 4+ 4x3F" — 2x*F" + 4x*F"" 4 2xF —4xF"" +8F" +2F ™)
+3n—1)[n—-3)S2 +3551(2x2F ~ 3x3F' + 2x*F" — x*F")
+3n—1)85@x*F" + x3F" —2x2F' +4x*F"" + 2xF — 4xF")
+3(n— 185 @x2F" —6xF" + 10F +4F"™)
+3n—1)[n—-3)S2+351Q2F +2F" — x*F")
+3n—1)[3(n—~3)S5 +851(6x*F"—6xF) = 0 (2.8)

where § = §2. This is the governing equation for the problems in which the uniaxial
stress—strain relation is taken to be a pure power law. It is worthy of note that the degree
of the nonlinearity is independent of n.

In plane strain, if the strain component in the longitudinal direction is assumed to
vanish (i.e. ¢, = 0), the corresponding stress component can be expressed as

(a +ao)+(v—l)E (o, +0p)

and the stress—strain relations are given by
1
](0' +04)

1 ! v 3y 3 1
“=F ( ~2)7 2% | T3l E, E)(" "")+ 2 [E+2 E, E

| [E+3f53)
.99:%[(1_%)%_%}3(; ;)w‘, o+ ( )[15*2(; ;)](am)

Loty 3011
ré — EorO ZES Ea
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By introducing the same non-dimensional quantities as in the plane stress case and with

the use of the Ramberg—Osgood relation, we obtain the governing equation as

G- +3pS)
14pS-!

—2XF" +4F "+ F )+ 3p[(S" VY (2x*F" + x3F" — x*F' + 2x*F"" — 3xF")

+(§"_. l),(leF,,, _2xF,. +2F +4F)+(S”~ 1)xr(x4Frl _x3Fl - XZF..)

+48" Y (PF = xF)+ (8" Y(F" +xF' — x*F")]

3
[1 —%Jrsz"“ L+ ](x“p"" +2X3F" 4 2X2F"" 4 xF' — x*F"

p(% - V)Z Sn—1y, 1" o ’ oo .-
+(1+p 1)z (8" Y@X*F" = x*F" — x*F +2x*F" +4xF + xF")
2p(§n—l)12

A,,.1.4 _3 F,. 2 e F... AII“IN__
+ 28" NY@F —3xF" 4+ x*F" + )+{(S ) —-———-—1+p§"_1

}(4):217

B 2p(§n— 1)'2

—3x3F +x*F 4 X F Y+ {(§"_ hy
where the effective stress can be expressed in an implicit form as

R Y
o553 vs2]

For p —» 0 or n = 1, this equation also provides equation (2.7), and for p — <o, it can be
reduced to

v—4 }?
W) (S, + Sy (2.10)

SHx*F" + 2x3F" — x*F" 4+ 2x*F"" + xF' = 2xF"" +4F "+ F™)
+3n— DB =382+ 85" 1(x*F — x3F —x*F")
+4n—DSSQX*F" + x*F" — x2F' +2x2F" — 3xF")
+in— 18T QX F" —2xF" +2F " +4F)
+in— D —-NT 2+ 85 WF" +xF —x*F")
+in—1)[Ln—3)88 + 85 1(4x*F" —4xF) = 0 (2.11)
where

S = XS, —5,)%+83.

Method of solution
{a) Plane stress. Rewrite equation {2.6) as

26 (X F" + 23 F" = XF" + xF' — 2xF" +4F" + F"" 4 2x*F"")
+5(2x2F = 3x3F 4+ 2x*F" — x*F")
+¢3(4x*F" + x3F" +4x?F" + 2xF — 4xF" — 2x*F")
+2¢,(2x*F" —3xF" +5F +2F )
+¢5(2F +2F " — x*F")+ 6¢6(x*F" —xF) = 0 (2.12)
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where
¢y = 1+pSte-1
¢z = Hn—)pSeIhn—3)82 + 58]
¢y = Hn—1)pSH"~98F
¢y = 3(n—1)pSHe~ 3
cs = Hn—1)pSH 94(n-3)32 + 33
ce = Hn—1)pS*"~ Vn—3)8'F + 38",

Equation (2.8) (for p = o0) can also be written in the form (2.12), with

¢, = §2

¢, = n—D[3(n—-3)5%+851
¢y = n—138%

cs = 3n—13%

cs = Hn—1)[3n—3)52+85"
cs = n—DEn-388 +33.

Let the direction 8 = 0 coincide with one of the principal axes of the applied load;
then the solution can be expanded into a fourier series of the form

F= i Jrlx) cos mB.

m=90,2,4,...
Substitution into equation (2.12) gives

o

Z (A4mf;:’+A3mf:;:+A2mf;::+A1mf;n+A0mfm) = 0 (213)

m=0,2,4,...
where

Agm = 2¢:x* cos mb
Az = 4x(c; + xc3) cos mf
Agm = X2[{~2¢,(1 +2m?)+2c,x* + c3x — ¢5} cos mf—4dmc, sin mf]
Aim = x[{2(c; — c3x)(1 +2m?) — 3¢, x*} cos mf — 6m{cex — c,) sin m0]
Aom = {2¢,m*(m* —4) + ¢,x* 2+ m*) + 2¢3x(1 + 2m?) + 2¢5(1 ~m?)} cos mb
+{6csxm—2¢c (5 —2m?)} sin mb.
Here the A’s are even functions of 8, and can be represented by cosine series as

= Y Bi(x)cosjo.

i=0,2,4,...
Substitute into equation (2.13) and let the coefficient of cos j# equal zero. A set of ordinary
differential equations is obtained as

A

st

e8]

Y (Binfuw 4Bl SuA+Bl, fr+Bl frutBbufy) =0 forj=0,2,4,... (2.14)

m=0,2,4,...
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where the BY, are determined by

i 4 fﬂ}Z )
B, = i+oom Sognds A, cos jB db. {2.15)

If a finite number of terms in the fourier series is taken, equation (2.14) might con-
ceivably be solved by an iterative process. First calculate B/, by using an approximate
solution (usually the elastic solution is taken for the first try) and solve the equations by
Potters’ method [13], which is described in Appendix A. Then with the new approximate
solution recalculate the B/, by formula (2.15) and solve the equations again. Continue the
process until, hopefully, the solution converges.

For n large or when many terms are taken in the fourier series, this iterative procedure
is usually found not to converge. A more efficient iteration technique, to be described next,
has to be employed.

Recall Newton’s method. Let G(F) = 0 be the governing equation, and suppose that F
is an approximate solution. Then a better solution is

F* = F+6F
where §F is obtained from the equation
OG(F) = —G(F). (2.16)

Continue the process until 3F becomes sufficiently small.
Now write equation (2.12) as

G(F) = ¢, L+l +e3lstelateshs+cglg = 0
where
Ly = Ax*F" 4+ 2x3F" = x*F" + xF' = 2xF" +4F "+ F"" 4+ 2x*F"")
L, = 2x*F —3x3F + 2x*F" ~ x*F"
Ly = 4x*F" + x3F" = 2x*F' +4x*F"" + 2xF —4xF"
L, = 2Q2x*F" ~3xF"+5F +2F")
Ls = 2F +2F —x*F”
L¢ = 6(x2F" —xF").
Then the equation corresponding to equation (2.16) is
0L, +¢,0L, 4 ¢38L 3+ Co0L +cs8Ls+cedlg
+Lydey+Lyde, + Lidey+ Ldc,+ Lsdcs+ Lgbeg = —~G.
Carry out all the variations, and this equation can be written as
d\0F" +d,0F" +d30F" +d0F" +ds0F" + de0F " +d10F +dgdF" +dg6F "~
+d oOF " +d OF +d ,0F +d30F +d  0F " +d50F" = -G (2.17)

where the d’s are given in Appendix B. Let
8F = Y 8f(x)cosmb.

m=0,2.4,..
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Equation (2.17) becomes
Z (a4m 5f;:'+a3m :;+a2m6f:1+a1m 5f;n+a0méfm) =-G (218)
m=0,2,4,...
where

ay, = d, cos mb

ds,, = d; cos ml—mds sin mg

4y = dg cOs ml —mds sin mf —m?dg cos mb

Gy = d 008 mB —mdg sin m6 —m2dy cos mf+m3d,, sin m@

Ao = d1, cOs mO—md, , sin m@ —m?d 5 cos mg +md, , sin mf +m*d, s cos mé.

The quantities a,,, G are even functions of 8, and can be represented by cosine series as

Ay = Z b'g! cos jo

j=0,2,4,...

G= Y Glcosjé.

j=0,2,4,...
Substitute into (2.18), and let the coefficient of cos jf equal zero. A set of ordinary differential
equations is obtained as

> (bi,.,éf”"+b5,,.5f"’+b£m5fi;+b’im5f£n+b%m5fm)=~G~" forj=0,2,4,...J

m=0,2.4,..

(2.19)
where the b/,, G/ are determined by
bl, = LJW a,, cos jo do
(1+6¢)m
(2.20)
m‘[ G cos jo dO.

Calculate bl,, G’ by using an approximate solution
F= Y  fdx)cosmb

m=02.4,...

and solve for df,, by Potters’ method. Then a better solution is

F*= Y  f¥x)cosmf

m=0,2,4,...

where
S =St

Recalculate b/, G/, and solve the equations again. Continue the procedure until §f,, becomes
sufficiently small.

It may be noted that for the calculation of the B, b/, G/, it is very difficult to obtain
analytic values, unless only one or two terms are taken in the fourier series. Instead,
numerical values were calculated from the integral formulas (2.15), (2.20) at each mesh
point used in the Potters” method.
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If the loading is pure shear applied at infinity, it is convenient to expand F in the sine

series
F= Y fudx)sinmd. (2.21)

m=2,610,...

Then the expressions of the A, in equation (2.13) are
Ay = 2c,x* sin mf
As, = 4x%(c, +c3x) sin mf
Az = x{=2¢,(1 +2m*)+2¢,x? + ¢3x — ¢5} sin m6 + 4mc, cos mf]
Ay = x[{2c; —c3x)(1+2m?*) —3c,x?} sin mB + 6m(cgx — ) cos m]
Ag = [2c,m*(m? —4) + c,x2 (2 4+ m?) + 2¢,x(1 + 2m?) + 2¢5(1 — m?)] sin mo
+[2cam(5 —2m*)— 6¢cxm] cos mb
which, again, can be represented by

Ay = ) Bi(x)sinjb.

i=2,6,10,...

Similarly, the expansions of 6F, a,,, G in Newton’s method are

6F= ) & x)sinmb
m=2,6,10,...
s = z bl sin jO
F=2,6,10,..
and
G= ) Gsinjb
j=2,6,10,...

where the a, are given by
a4, = d, sinmf
as, = d, sin ml+md; cos mf
Azm = dy sin mf +md s cos mf —m?dg sin m@

Ay = dy sin m8 +mdg cos m@—m?d, sin mf—m3d, , cos mf

Ao = dy, sin mO+md,, cos mo —m?d  ; sin mf —m3d,, cos m +m*d, 5 sin mo

and the d’s are the same as before.

(b} Plane strain. Equations (2.9) and (2.11) can also be solved by the method just des-
cribed above. In equation (2.9), the approximate value of § in each iteration may be obtained
from expression (2.10) with the use of the previous § for the value on the right hand side. In
the present study, only equation (2.11) is considered for the case of pure shear loading. In
this case, the expressions for the 4, and d’s are given in Appendix B.
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3. STRESS CONCENTRATION AT A CIRCULAR HOLE IN AN INFINITE PLATE
SUBJECTED TO LOADS IN ITS OWN PLANE

Plate with a hole in pure tension

(a) Governing equations and boundary conditions. The loading related to the polar co-
ordinates is shown in Fig. 1. Assume that the strain is small and the thickness of the plate
remains constant during deformation. The stress components transverse to the plate are
assumed negligible, and so the stress field in the plate is approximated by a state of plane
stress. Then equation (2.6) is the governing equation for 4 finite and equation (2.8) is for A
infinite.

From the symmetry conditions, the modified stress function is in the form

F= Y  fdx)cosmb.

m=0,2,4,...
The boundary conditions at the hole are
S, =0, Se=0

or
2F)-F()+F(1)=0 (3.1)
F'(1)-F(1)=0 )

and the stresses at infinity are

S, = {1 +cos 20)

Se = (1 —cos 26)

S,p = —%sin20.
These give

F(0) = +—4cos 20. (3.2)
In order to obtain the second boundary condition at x = 0, rewrite equation (2.3) as

i —¢&, + 2¢,
xep+ &+ 2 = ———22

At x = 0, —¢; +2¢,, = 0; so this gives
£°(0)+¢(0) = 0.
But since ¢, has the form ¢, = zm=o,z, s.... hm(x) cos md, it follows that
&0) = 0.
Hence, from the stress—strain relation (2.5), we have
F0)+F(0)=0.
Again, F has the form F = Zm=0,2, 4.... Jm(x) cos mB; so the second boundary condition at
infinity is
F0)=0. (3.3)

It is noted that the boundary conditions (3.1) only give one condition for f,(1), and the
second condition is obtained by letting f,(1) equal an arbitrary constant.

(b) Results and discussion. Equation (2.6) [or (2.8) for 1 = o0] with boundary conditions
(3.1), (3.2) and (3.3) was solved by Newton’s method described in Section 2. Calculations
were made for values of n = 3, 5 and 9. Depending on 1 and n, from three to six terms in
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the fourier series (with the same number of terms for the expansions of 3F and a,) were
found to be needed for satisfactory convergence. Convergence was considered to be
satisfactory, if the difference of the results for the stress concentration factor was less than
1 per cent when an additional term was added.

The results for stress concentration factors determined as K = [(64),..2}/0 ., are shown
in Fig. 6 as plots of K against A for 4 < 1 and against 1/A for 1 > 1. The limiting result for
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o

F1G. 6. Variation of stress concentration factor with applied stress.

n = o0, corresponding to an elastic—ideally plastic material was obtained by assuming
that the maximum stress at the hole is 36, until ¢, reaches 3o, and thereafter remains at
the value a;. Thus, for 1a; < o, < g, the stress concentration factor is K = 1/4. It may be
noted that o, can not exceed o, for an ideally plastic material. The dashed lines shown in
this figure connect points of constant {(gg), .;2)/e;, where ¢; is the nominal yield strain
associated with o,; that is ¢; = 10/7 ¢,/E. Since the stress state at the hole is uniaxial,
[(£9)a,z/2)/€1 1s Obtained simply from the Ramberg-Osgood relation (2.1) as

Coar2 _ 0.71K +0.30KY

&r

(3.4)

Figure 7 shows the stress history at the point of the maximum stress (i.e. at 0 = n/2,
r = a)

Figures 8(a)-10(b) show the distributions of ¢, and & along 0 = #/2 for 1 = 0.3, 0-8
and oo. It is interesting to note that the maximum stress g4 no longer occurs at the hole
when the deformation becomes large; but the effective stress still attains its maximum
at the hole.

A typical distribution of # in the plastic range is shown in Fig. 11{a) wherein contours
of constant values of & are plotted for the case n = 9 and 2 = 0-8. For comparison, similar
contours are shown for the elastic case in Fig. 11(b). A detailed stress distribution for
A4 = 0-8 and n = 9 is given in Table 1.
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FiG. 7. Stress history at the point of maximum stress.

In order to check the acceptability of the J, deformation theory, the stress paths at
various points along § = n/2 (which appear to deviate the most from proportional loading)
for n = 3 and n = 9 are shown in Figs. 12 and 13, respectively. These plots show that the
stress paths depart only slightly from a radial direction by amounts which are well within
the permissible range given by the criterion of Ref. [12].

1t may be interesting to compare the present results with Budiansky and Vidensek’s.
They also used the Ramberg-Osgood relation and expanded the stress function into fourier
series, but only two terms were taken. The comparison of the stress concentration factor is
shown in Table 2. It can be seen that their results agree with our two terms’ results fairly
well.

Plate with a hole in pure shear

(a) Governing equations and boundary conditions. The loading related to the coordinate
system is shown in Fig. 2. As in the case of pure tension, the usual assumptions of generalized
plane stress are made, with strain assumed small and changes in the plate thickness
neglected. Equations (2.6) and (2.8) are then the governing equation for A finite and infinite,
respectively.

The modified stress function F is assumed in the form (2.21). The stress components at
infinity are

S, = sin 20
S = —sin 20
S,s = cos 28.
These give
F(0) = —3sin26. 3.9
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F1G. 8(a). Stress distribution of gy along 8 = /2 for 1 = 0-3.

As in the case of pure tension, it can easily be shown that the second boundary condition
at infinity is

F(0) = 0. (3:6)

The boundary conditions at the hole remain as same as (3.1).

{b) Results and discussion. As in the previous case, equation (2.6} {or{2.8)for A = co] with
boundary conditions {3.5), (3.6) and (3.1) was solved for values of n = 3,5and 9. Two to
five terms in the fourier series were found to be needed for satisfactory convergence (on
the basis of the same convergence criterion as in the tension case). The results for the stress
concentration factor defined as K = [(64), 1a]/T are shown in Fig. 14. The limiting result
for n = oo was obtained by assuming that the maximum stress at the hole is 4, until
1, reaches %o,, and thereafter remains at the value o;. Thus, for 0, < 7, < 1/,/(3)o;
the stress concentration factor is K = 1/A. It may be noted that 7, cannot exceed 1/,/(3),
for an ideally plastic material obeying the Mises yield criterion. Again the dashed lines in

0% i
0 -] o8 o7 o5 L) o4 03 o2 Ot o

-le

F1G. 8(b). Stress distribution of 4 along § = =/2 for 1 = 0.3
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FiG. 9{a). Stress distribution of g, along § = n/2 for 1 = 08.

this figure connect points of constant strain ((£y), »/41/€1, as obtained from the Ramberg-—-
Osgood relation (2.1).

The stress history at the point of maximum stress (i.e. at 8 = /4, r = a) is shown in
Fig. 15.

Figures 16(a}-18(b) show the stress distributions of 4 and é along 8 = n/4 for A = 0-2,
0-7 and o0. As in the pure tension case, the maximum stress does not necessarily occur at
the hole, but the effective stress does reach its maximum at the hole. It is interesting to note
that the effective stress ¢ attains a minimum at about r = 2a, which does not occur in the
case of pure tension.

A typical distribution of 8 in the plastic range is shown in Fig. 19(a), wherein contours
of constant values of & are plotted for the case of n = 9 and 4 = 0-7. For comparison,
similar contours are shown for the elastic case in Fig. 19(b). A detailed stress distribution
for A = 0-7and n = 9 is given in Table 3.

$
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Fi1G. 9(b). Stress distribution of & along 8 = #/2 for A = 0-8.
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F1G. 10(a). Stress distribution of o, along 8 = n/2 for A = w.

The stress paths at various points along § = n/4 (which appear to deviate the most from
proportional loading) for n = 3 and n = 9 are shown in Figs. 20 and 21, respectively.
Figure 21 shows that the stress path at a/r = 0-6 has a serious deviation from proportional
loading in the range of § < ¢, bounded by the dashed line. But plastic strains are so small
in this range that we may expect the present deformation-theory analysis still give a
reasonable solution to the problem.

4. ON STOWELL’S FORMULA AND NEUBER’S RULE

Stowell’s formula
Stowell [9] presented an approximate formula for the stress concentration factor at a
circular hole in an infinite plate under pure tension as

E
K = 142 ez (4.1)
(B
30 - j
2 !
Gool,
20
n=3
15 n=s
n=9
t O
o5 i " . " . " a
i o8 o8 o7 o8 035 o4 o3 o2 04 ¢ F

F1G. 10(b). Stress distribution of 8 along 8 = n/2 for A = .
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8=T1/2

F1G. 11{a). Effiective stress distributionfor A = 0-8andn =9,

FiG. 11{b). Effective stress distributions in the elastic range.
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TABLE 1. STRESS DISTRIBUTIONS IN A PURE TENSION PLATE FOR n == 9 AND 4 = 0.8
g
0 /20 710 3m/20 /S /4 32/10 Tn/20 2n/5  9nm/20 72

ajr

(a) S,
00 1000 0976 0905 0794  0-655 0500 0346 0206 0096 0025 0000
01 0970 0945 0873 0762 0626 0482 (343 0218 0117 0049  0.025
02 0-884  0-861 0792 0686  0-561 0440 0335 0245 0167 0108 0086
03 0756 0736 0678 0586 0477 0380 0311 0263 0223 6188 0173
04 0597 0584 0544 0474 0389 0317 0273 0259 0264 0276 0281
05 0420 0417 0399  0-358 0304 0256 0228 0234 0283 0351 0384
0-6 0-246 0249 0251 0246 0227 0199 0182 0207 0288 (0385 0430
0.7 0099 0100 0114 0142 0158 0146 0141 0187 0277 0359 0390
08 -0-007 ~0006 0012 0055 0091 0099 0111 0162 0231 0274 0286
09 -—-0050 0046 —0030 0001 0032 0054 0076 0107 0136 0149 0151
1- 0000 0000 0006 0000 0000 0000 0000 0000 0000 0000 0000

(b) S,
0-0 0000 0025 009 0206 0346 0500 0655 0794 0905 097 1-000
01 0006 0030 0101 0212 0352 0507 0662 0802 0913 0984 1-009
02 0018  0-043 0115 0227 0370 0528 0687 0830 0943 1-015 1-040
03 0-031 0056 0-130 0246 0393 0558 0725 0876 0994 1-068 1093
0-4 0036 0063 0140 0262 0417 0591 0768 0930 1-061 1-144 1-173
0.5 0021 0-051 0138 0269 0436 0623 0812 0989 1-142 1-252 1-293
06 —0033 0004 0106 0258 0446 0651 0-859 1059 1.242 1-381 1-434
07 —-0145 0103 0019 0210 0438 0674 0912 1-148 1-353 1-491 1-539
08 —-0339 -0290 -0-141 0099  0-388 0-687 0979 1.245 1-449 1-557 1.587
09 —-0641 0573 —0-380 --0-088 0-278 0679 1-051 1-333 1-501 1.577 1-597
1.0 —1007 --0932 —0712 -0-351 0137 0671 1-113 1.379 1-503 1.561 1-581

(I
00 0000 —0-155 —0294 0405 —0476 0500 -0476 -0405 —0294 —0155 0000
0-1 0000 0158 —0301 0415 —0489 0515 —-0491 —0417 —-0303 —-015 0000
0-2 0000 —-0-168 —0-318 —0438 —0.516 —0545 -03521 ~-0445 -0324 -0171 0-000
0-3 0000 —0-179 —0-340 —0-465 —0-545 -0-573 —0549 -0474 —0351 —0-187  0.000
04 0000 —0-191 —0361 —0490 —0569 -0592 —-0.564 —-0491 —0372 —-0204 0000
0-5 0-000 -0-199 -0375 ~0507 -0-581 —0596 —0-562 —0-486 -—0.367 —0-201 0-000
06 0000 ~0196 —-0375 0507 —0574 —0.580 -0-538 —0450 -0318 —0-161 0-000
07 6000 —0179 —0-345 ~0471 —0535 -0-536 0481 —0372 —0:232 -0102 0000
0.8 0000 —0-147 —0277 —0380 —0443 ~0445 —-0374 —-025 —0139 —0055 0000
09 0000 —-0091 —-0165 —-0226 —0273 -0274 —0212 -06124 -0059 00249 0000
1-0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

) §
0-0 1-000 1-000 1-000 1-000 1-000 1000 1.000 1000 1-000 1-000 1-000
131 0967 0970 0977 0990 1-006 1.020 1-025 1-019 1008 0999 0996
02 0875 0889 0924 0971 1-021 1-063 1-081 1-068 1037 1-010 1-000
03 0-741 0775 0857 0954 1042 1-109 1-141 1-131 1-089 1-040 1-018
0-4 0-579 0647 0793 0943 1-065 i-146 1-187 1-190 1153 1-093 1.061
0-5 0-410 0524 0739 0936 1.078 1-166 1-214 1-229 1-211 1-171 1-150
0.6 0264 0420 0685 0914 1.066 1158 1.218 1-246 1.253 1-265 1.275
0.7 0212 0356 0607  0-837 1003 1112 1-190 1-247 1-302 1-359 1-385
0-8 0335 0384 0502 0664 0-844 1003 1132 1-255 1-369 1.442 1-465
09 0-618 0573 0464 0402 0542 0807 1079 1-300 1-441 1-509 1.527
10 1007 0932 0712 0351 0137 0671 1-113 1.379 1-503 1-561 1-581
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F1G. 12. Stress history at fixed points along 6 = n/2 forn = 3.
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F1G. 13. Stress history at fixed points along 6 = n/2 forn = 9.
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TABLE 2. A COMPARISON OF THE STRESS CONCENTRATION FACTOR
BETWEEN PRESENT RESULTS AND BUDIANSKY AND VIDENSEK

K
Present Budiansky
and
Final Two Vidensek
result terms

A M=4 M=2 (M=2

03 2:65 2.73 2:80
n=73 0.5 2:40 2:52 2:60
0-8 2:17 232 243

(M =5
0.3 268 2.76 2-80
n=>5 05 224 235 2:40
08 1-85 1.97 2:00

(M = 6)
03 279 2:86 2:95
n=9 0-5 213 2:24 225
08 1-58 1.67 1.68

+ M is the number of terms taken for the fourier series
expansions.

where K is the stress concentration factor defined as K = [(0g)g2/2)/0 > (Eg)g 2 15 the
secant modulus at the point of maximum stress and (E,),, is the secant modulus at points
far away from the hole where the stress is applied.

This formula was obtained from an approximate stress distribution which was adjusted
by minimizing the mean square of the error in satisfying the equilibrium equations. There
was no consideration of the compatibility equations. This analysis is questionable in several
respects, but Stowell’s formula is often used because of its simplicity and good agreement
with many experimental results.

O[ L L L | 1 1 | I
8l 02 04 06 08 10 o8 06 04 oz 0
Tm EI_
Sy Tw

FiG. 14. Variation of stress concentration factor with applied stress.
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F1G. 1S. Stress history at the point of maximum stress.

A comparison of the stress concentration factors obtained from this formula and the
results presented in the last section is given in Table 4, in which the Ramberg—Osgood
stress—strain curve was used and formula (4.1) becomes

21+340Y

K=l+opio )
TR

4.2)
It is rather surprising that Stowell’s formula gives results that agree so closely with those
obtained by the present analysis.

Formula for the stress concentration factor in a pure shear plate with a circular hole

Following Stowell’s derivation for a tension plate, a formula for the stress concentration
factor at a circular hole in an infinite plate under pure shear is obtained in Appendix C as

o4 4 (Es)a n/4
K = e e | | 2SR
e ( 1) (E)..

NE
where K is the stress concentration factor defined as K = [(8g)y./a)/6 > (Egansa is the
secant modulus at the point of maximum stress and (E,) ,, is the secant modulus at infinity.

As mentioned in the previous section, it can be seen that this formula is achieved on the
basis of a treatment that ignores compatibility entirely and satisfies equilibrium in some
average fashion. It is desirable to assess this formula by comparing the results with those
obtained from the previous numerical analysis. Let us reintroduce the stress concentration
factor K = [(64), r/4}/7», and use the Ramberg-Osgood uniaxial curve to determine the
secant modulus. Then formula (4.3) becomes

K= —J/3-(4—./3)

4.3)

1 +%\/(3)n— lAn- 1
1+327 K

4.4)
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FiG. 16{a). Stress distribution of g, along # = n/d for A = 0-2.

The results are given in Table 5. It is seen that this formula gives slightly higher results
than those obtained from the numerical analysis, but the difference is small. The formula
is therefore reasonably good for an approximate estimate of the stress concentration factor
in a pure shear plate with a circular hole.

Generalized formula for a plate with arbitrary holes, notches or fillets

Based on experimental results, Hardrath and Ohman [10] generalized Stowell's
formula for arbitrary holes, notches or fillets in a tension plate by rewriting formula (4.1) as

(Es)max stress
Kplastic =1 +(Kelaslic" 1)_—(5“&“_ (45)

; g
3 Ol - g

4 o9 o8 o7 il a8 o4 a3 oz G o

F1G. 16(b). Stress distribution of § along & = n/d for 4 = §-2.
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F1G. 17(a). Stress distribution of ¢, along 6 = n/4 for A = 0.7,

where K, is the stress concentration factor in the plastic range and K,y is the stress
concentration factor in the elastic range.

Similarly, by inserting a corresponding value of K,,;. for a particular plate under
consideration in formula (4.3), a generalized form is obtained as

i (E ax stress
Kptasu‘c =1 +(Kclastic" 1)% (46)
where the stress concentration is defined as K = (8,,,,)/6. This relation includes the
Hardrath-Ohman formula (4.5) for pure tension and is therefore proposed, tentatively,
as a relation between Kp,asﬁc and K, not only for a pure tension but also for a pure

B[}

%5 o8 o7 s 05 %403 356

F16. 17(b). Stress distribution of & along 8 = n/4 for 1 = 0.7.
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Fic. 18{a). Stress distribution of 6y along § = zfd for 1 = oo,

shear plate with arbitrary holes, notches or fillets. Furthermore, it appears that this formula
may be applicable to other stress states. A test for the case of balanced biaxial tension
plate with a circular hole is shown in Table 6. Here the stress concentration factor K defined
as K = [{(0p)no1e)/0 . 15 found from the equation

I+307!

K=l4—in
M e

4.7)

obtained from formula (4.6} with the use of the Ramberg-Osgood relation. It is seen that
the agreement with the results obtained by Budiansky and Mangasarian [2] is fairly good.

4.0 p—

T
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F1G. 18(b}. Stress distribution of § along & = /4 for 4 = .
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FI1G. 19(a). Effective stress distributions for A = -7 and n = 9,

On Neuber’s rule

By considering a notched prismatic body, obeying an arbitrary non-linear stress—
strain law, and subjected to antiplane shear, Neuber [11] derived a relationship between
stress and strain concentration factors as

KK, = K (4.8)

0l i 2 3 4

F1G. 19(b). Effective stress distributions in the elastic range.
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TABLE 3. STRESS DISTRIBUTIONS IN A PURE SHEAR PLATE FOR = 9 AND

i=07
0
0 7/20 /10 3n/20 n/5 n/4
afr
(a) S,

00 0-000 0-309 0-588 0-809 0-951 1-000
0-1 0-000 0-208 0-496 0-758 0917 0-972
02 0-000 0-121 0-311 0-608 0-826 0-892
03 0-000 0-095 0-190 0-385 0-654 0-759
04 0-000 0-090 0-149 0-209 0-380 0-520
05 0-000 0.098 0-140 0-134 0-088 0-049
06 0-000 0-114 0-143 0114 —-0-164 —0-550
0-7 0-000 0-122 0-157 —-0019 -0429 —0-605
08 0-000 0-124 0-055 —0243 —0-384 —0413
09 0-000 0034 -0098 —0-184 —-0202 0212
1.0 0-000 0-000 0-000 0-000 0-000 0-000

(®) S,
00 0000 —0309 —0-588 —0809 -—-0951 —1-000
01 0000 —-0312 —0592 —0813 —-095% —1.005
02 0000 —0321 —0610 -0832 -0972 -—-1.021
03 0000 ~0329 —0631 -—-0864 —0998 —1.043
04 0000 —-0335 —-0646 -—-0899 —1.040 —1.070
0-5 0000 —-0341 —0659 —0931 —1.104 —1.144
0-6 0000 —-0350 —-0690 -—-0990 -—1.341 —1-618
0.7 0000 —-0391 -0776 —1.289 —1.859 —2:000
0-8 0000 —0491 —1-149 —1.862 -—-2072 -—-2.093
09 0000 -0924 —1.742 —-2045 —-2112 -2.120
1.0 0000 —1.386 —1910 -2059 -—-2.097 —2-105

0-0 1-000 0-951 0-809 0-588 0-309 0-000
01 1.032 0-982 0-831 0-599 0-314 0-000
02 1.066 1-025 0-886 0-637 0-329 0-000
0-3 1.089 1.053 0-939 0-709 0-366 0-000
04 1-103 1072 0-970 0-784 0-447 0-000
0-5 1-114 1.082 0-993 0-829 0-560 0-000
0-6 1-114 1-087 0-994 0-839 0-520 0-000
0-7 1-098 1-060 0-953 0-657 0-159 0-000
08 1.013 0-965 0-688 0-227 0-033 0-000
09 0-774 0-590 0-232 0-058 0-012 0-000
-0 0-000 0-000 0-000 0-000 0-000 0-000

0-0 1.732 1.732 1.732 1.732 1-732 1.732
01 1.788 1.761 1.721 1.712 1.711 1.711
0-2 1-847 1-819 1.736 1-668 1660 1-658
03 1-886 1-864 1-788 1-653 1.574 1.567
0-4 1910 1-897 1.833 1-698 1-490 1-405
0-5 1930 1.915 1.872 1.752 1.504 1-169
0-6 1-930 1.929 1-887 1-794 1-554 1-425
0.7 1.903 1-893 1.863 1713 1.708 1.777
0-8 1755 1.764 1675 1.797 1.910 1.920
09 1-340 1-389 1.742 1-962 2:019 2:023
1.0 0-000 1-386 1910 2:059 2097 2-105
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F16G. 20. Stress history at fixed points along 8 = n/4 forn = 3.

where K, and K, are the stress and strain concentration factor, respectively, and K is
the elastic stress (or strain) concentration factor.

Neuber suggested that this rule may be applicable to other stress states. It is interesting
to examine the validity of this rule for plane stress problems on the basis of the results
obtained in the last section.

Figures 22 and 23 show plots of K K,/K% vs. A for a pure tension plate and a pure
shear plate with a circular hole, respectively, as given by the present results. Since the stress
state at the hole is uniaxial, the values of K, are directly calculated from the Ramberg-
Osgood relation as

K = (80)(1,1!/2 - Ka(l +%_ln—lK:" 1)
g 14341

for pure tension

and

K _ Cags _ K +327'K2"Y

. " = 14373 T for pure shear.
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Fic. 21. Stress history at fixed points along § = n/4 forn = 9.

TABLE 4. STRESS CONCENTRATION FACTORS IN A PURE
TENSION PLATE

K
Stowell Present Neuber

A (M =4}
03 2-63 265 270
05 238 240 251
n=73 0-8 211 217 2.21
15 1-89 194 195
o0 1-76 1-80 1-73

(M =75
0-8 2-69 2.68 273
0-5 2.24 2-24 2-30
n=>5 0-8 1-82 1-85 1-86
1.5 1.52 1-59 1-55
[ee] 1-46 1-52 1-44

(M = 6)
03 2-80 2:79 2-82
0-5 214 213 219
n=9 08 1-58 1-58 1-59
15 1-29 130 1-26

U 1-28 1-29 125
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TABLE 5. STRESS CONCENTRATION FACTORS IN A PURE

SHEAR PLATE
K
Formula Present Neuber
4.4

A (M=3)
0-2 —3.66 —3.62 —3.69
0-4 —322 -322 —331
ne3 0.7 - 300 —293 —3.00
10 ~ 287 —2-80 —2-85
15 -277 -271 —274
o - 2-67 —2.62 —2.63

(M =4
0-2 ~3.74 —3.69 - 376
0-4 - 296 —-293 —3-04
_s 0-7 ~2.52 —2.46 —2.49
n= 1-0 -242 ~234 —235
1-5 —2:38 —230 —-2:31
o —2.37 —230 —229

(M = 5)
0-2 —3.88 —385 - 3.89
04 - 2:82 -273 —-275
ne9 0-7 ~2.20 —2.11 —212
- 1-0 —~2:15 -206 —205
1-5 ~2:14 - 205 —-2:04
o -2:14 —-2.05 —204

TABLE 6. STRESS CONCENTRATION FACTOR IN A BALANCED BIAXIAL
TENSION PLATE

K
Budiansky
Formula and

A 4.7) Mangasarian Neuber

0-4 1-86 1-82 1-86

0.8 1-70 1-64 169
n=3 1-0 1.65 1-57 1-63

-5 1-57 1-44 1-54

0 1-46 1.36 141

04 1-88 1-85 1-88

08 1-56 1-49 1-54
n=35 1.0 147 1-38 1-43

1-5 1.37 123 1-31

© 1-32 1-22 1-26

0-4 1.95 194 195

0.8 1-45 1-38 1-42
n=9 1.0 1-30 1.22 1-26

15 1-21 112 115

0 1-21 1-12 1-15
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FiG. 22, Curves of K K /K} with 1 in a pure tension plate.

Without reference to the present analysis, the stress concentration factor K, can be
found directly from the equations
9(1+34"" 1

2 .
K; = T3 1K1 for pure tension

and

k2 - e +3/e)" P
R E i

obtained from the Neuber rule (4.8) with the use of the Ramberg-Osgood relation. These
equations provide the values of K, (by trial and error) shown in Tables 4 and §.

It is seen that Neuber’s rule gives a slightly higher value of the stress concentration
factor than that obtained from the present numerical analysis when the strain is small,
and gives a slightly lower value when the strain is large. The difference is smaller for the

for pure shear

{ l 1 1 H ] i 1
] 02 0.4 08 08 10 12 14 1.6

05

F16. 23. Curves of K, K /K% with 4 in a pure shear plate.
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case of pure shear than for the case of pure tension. Generally speaking, this rule gives an
accurate result for the stress concentration factor. It should be noted that in Fig, 22 the
considerably large deviations from the Neuber rule for A and n large are associated with
very small differences between the stress concentration factors predicted by the Neuber
rule and the present analysis. The reason is that small increases of stress can produce very
large strain differences when n is not small. Thus, the use of plots like those in Fig. 22 to
assess how well experimental data follow the Neuber rule might be somewhat misleading.

A further test for the case of balanced biaxial tension plate with a circular hole is shown
in Table 6 where the stress concentration factor K, is given by

K? - 4143471
R Ay ¢
This is obtained from the Neuber rule {4.8) with the use of the Ramberg-Osgood relation.

It is seen that the Neuber rule gives a result between those obtained from formula (4.6)
and by Budiansky and Mangasarian.

5. STRESS DISTRIBUTION AROUND A RIGID CIRCULAR CYLINDRICAL
INCLUSION IN AN INFINITE MATRIX SUBJECTED TO TRANSVERSE
LOADING

An infinitely long cylindrical inclusion in a matrix under transverse pure shear

(a) Governing equation and boundary conditions. As shown in Fig. 3, the uniform load
applied at infinity is perpendicular to the cylindrical direction, and therefore the body may
be assumed to be in a condition of plane strain. Since the inclusion is rigid, the strain
components in the longitudinal direction vanish, i.e. g, = 0. Hence the stress function
is governed by equation (2.11) in a power law strain hardening matrix.

On the boundary of the rigid inclusion

Ut)y=va)=0.
These give the boundary conditions

g(1) = 0, whence F'()-F{1)—F(1)=0 5.1
and
2e54(1) +e1) = 0
which leads to
Fr{O+B4+4n~DF(1)-3+4n-DIF(1) = 0. (5.2)
For pure shear loading at infinity, the boundary conditions at x = 0 are
F(0) = —4sin 26
F(0) = 0 -3

and the modified stress function has the form

F o= Y fulx)sinmo.

m=2,6,10,.,
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(b) Results and discussion. By the method presented in Section 2, equation (2.11) and
boundary conditions (5.1}+5.3) were solved for the values of n = 3, 5, 7. Depending on n,
three to five terms in the fourier series were needed for satisfactory convergence as measured
by a difference of the result for the maximum stress less than 1 per cent when an additional
term was added.

Table 7 shows the stress distributions of all the stress components for n = 7. It is seen
that the circumferential stress component o, has a very sharp gradient at the points
immediately away from the inclusion, and the maximum effective stressisat § = 0,r = a.
The spatial stress distributions of o, along 8 = n/4 and ¢ along # = O for n = 3, 5, 7 are
shown in Figs. 24(a) and (b).

An application of these results to the theory of fiber reinforced materials is given in
Ref. [15].

An infinitely long cylindrical inclusion in a matrix under transverse pure tension

For problems under plane strain conditions with ¢, = 0 in an incompressible material,
the solution for the case under pure tension (see Fig. 4) can be obtained by superposing
the solution for the pure shear case and the solution for the balanced biaxial tension case as
shown below :

3 | 3 ?

1 1
«—] > — ] L2y e 2,
T !

In the balanced biaxial tension case, incompressibility forces the stresses to be constant
and the strains to vanish everywhere. The effective stress at each point in the pure tension
body is the same as that at the corresponding point in the pure shear body. Therefore, if the
stresses in the pure shear case with loading S, = 1 at 8 = 0 are

S, =3 S,{x)sin md
Se = ) Symlx) sin m
S,e =, S,emix) cos mo
the solution for the case under pure tension with loading S, = l at0 = 0 is
S, = {143 S,.(x) sin m(0 +7/4)]
So = {1+, Senlx) sin m(6+ /4]
S, = 3. S,(x) cos m(0+n/4).
Table 8 shows the stress distributions of all the stress components for n = 7. It is worthy

of note that the effective stress is symmetric with respect to # = n/4 and attains its maximum
at 0 = n/d,r = a.
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TABLE 7. STRESS DISTRIBUTIONS AROUND A CYLINDRICAL INCLUSION UNDER TRANSVERSE PURE
SHEAR FOR n = 7

0 /28 n/14 3n/28 n/7 5n/28 3n/14 n/4

00 0-000 0-223 0-433 0-623 0-781 0-901 0975 1-000
01 0-000 0-252 0.463 0-638 0.787 0-906 0979 1-001
0.2 0-000 0-318 0-546 0-692 0-815 0-924 0-991 1.010
03 0-000 0.365 0-631 0-786 0-884 0-962 1.018 1-038
04 0-000 0-366 0675 0-882 0-989 1-040 1072 1.086
0-5 0-000 0349 0-668 0-923 1.086 1-158 1-170 1-167
0-6 0-000 0-343 0-645 0-906 1-125 1-265 1.312 1315
07 0-000 (-336 0-635 0-888 1110 1-308 1-458 1-516
08 0-000 0.327 0636 0-896 1111 1-327 1-531 1-620
09 0-000 0-343 0-641 0-912 1173 1-371 1.462 1-480
1-0 0-000 0.361 0-636 0-903 1-188 1-316 1-221 1-130

- 0000 -0223 -—-0433 -0623 —-0781 —0901 -0975 ~—1.000
01 0000 -0222 -0434 0624 -—0782 -0901 -0975 ~1.000
02 0000 —0221 -—-0432 -0623 -0783 -—0903 -0977 -~1.003
0-3 0000 -0215 -0423 -0614 ~0777 —-0900 -0976 ~1.001
04 0000 —0209 —0407 0589 —0751 —0880 0960 ~0987
0.5 0000 —-0206 -0393 ~0557 —-0702 —-0826 0914 0946
06 0000 -—-0201 —-0387 -0538 —0648 0737 0812 0844
0.7 0000 —0196 —0378 03526 —0619 —0653 ~0650 ~0.643
0-8 0000 —0192 —0353 0482 0562 -0543 0444 0385
09 0000 —0143 -0248 -0294 -0273 -0200 -—0115 -0077
1-0 0-000 0.361 0-636 0903 1-188 1-316 1221 1-130

00 1.000 0-975 0-901 0-781 0-623 0433 0-223 0-000
01 0-990 0-966 0-896 0-779 0-622 0433 0222 0-000
0-2 0965 0-942 0-874 0.764 0-614 0-429 0-220 0-000
03 0-944 0914 0-837 0-729 0-590 0-417 0214 0-000
0-4 0-937 0-899 0-804 0-680 0.542 0-385 0-202 0-000
05 0-934 0-899 0-797 0-646 0-483 0-329 0172 0-000
0-6 0-938 0-907 0-811 0-654 0-462 0-275 0122 0-000
0.7 0.957 0-920 0-827 0-691 0-503 0-288 0112 0-000
08 0-977 0-948 0-864 0736 0-585 0-419 0-224 0-000
09 1.017 1-008 0951 0-842 0-740 0-637 0-404 0-000
1.0 1.274 1.256 1.205 1-124 1-007 0-807 0-465 0-000

(d) 8/3
00 1000 1000 1000 1000 1000 1000 1000 1000
01 099 0995 1002 1002 1001  1.002 1002  1.001
02 0965 0980 1002 1008 1008  1.009 1008 1007
03 0944 095 098 1011 1019 1020 1020  1.019
04 0937 0944 0969  1.002 1025 1034  1.036  1.037
0-5 0934 0941 0958 0983  1.016 1045 1056  1.056
06 0938 0947 0961 0974  1.000 1038 1068  1.079
07 0957 0958 0970 0988 1000 1022 1060  1.079
08 0977 0983 0995 1008 1021 1025  1.012 1002
09 1017 1036 1050  1.036 1035 1011 0886 0779
10 1274 1256 1205 1124 1007 0807 0465 0000
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F1G. 24(a). Stress distribution of ¢, along # = n/4.

6. THE APPLICABILITY OF THE POWER LAW SOLUTION TO STEADY CREEP

For the metals used in structures, the experimentally established steady creep law is
often taken in the form

£ = kg" {6.1)

where ¢ is the tensile strain rate caused by uniaxial tension g and k, n are constants obtained
from constant temperature creep tests.

7 T
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FiG. 24(b). Stress distribution of & along 6 = 0.
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TABLE 8. STRESS DISTRIBUTIONS AROUND A CYLINDRICAL INCLUSION UNDER TRANSVERSE PURE TENSION FOR 11 = 7

0 /20 n/10  3r/20 n/5 n/4 3n/10  Tm/20 2r/5  9m/20 /2
afr

(a) S,
0-0 1.000 0976 0905 0794 0655 0500 0346 0206 0096 0025 0000
01 1.001 0978 0907 0803 0672 0500 0328 0197 0093 0022 —0-001
0-2 1005 0985 0919 0833 0711 0500 0289 0167 0081 0015 —0.005
03 1019 1000 0951 0881 0743 0500 0257 0119 0049 0000 —0-019
0-4 1.043 1030 1001 0925 0750 0500 0250 0075 —0001 —0030 —0.043
0.5 1-084 1085 1.054 0939 0741 0500 0259 0061 —0054 —0.085 —0.084
0-6 1157 1151 1.080 0928 0735 0500 0265 0072 —0080 —0-151 —-0-157
0-7 1-258 1203 1076 0920 0731 0500 0269 0080 —0076 —0.203 —0-258
0-8 1.310  1.228 1.077 0924 0728 0500 0273 0076 -0.077 —0-228 —0310
09 1240 1219 1110 0929 0734 0500 0266 0071 —0110 —-0-219 -0-240
1+ 1.065 1.138 1116 0923 0740 0500 0260 0077 —0-116 —0-138 —0-065

0.0 0-000 0025 009 0206 0346 0500 0655 0794 0905 0976 1.000
01 0000 0024 0095 0206 0346 0500 0654 0794 0905 0976 1-000
02 -0001 0023 0095 0206 0346 0500 0654 0794 0905 0977 100t
03 -0001 0024 0098 021t 035 0500 0650 0789 0902 0976 1001
0-4 0007 0033 0110 0223 0355 0500 0645 0777 0890 0977 0993
0-5 0027 0058 0136 0237 0358 0500 0642 0763 0864 0942 0973
0-6 0078 0107 0167 0244 0361 0500 0639 0756 0833 0893 0922
0-7 0178 0174 0185 0250 0364 0500 0636 0750 0815 0826 0-822
0-8 0308 0257 0216 0271 0370 0500 0630 0729 0784 0743 0692
09 0461 0427 0369 0355 0404 0500 0596 0645 0631 0573  0-539
1.0 1.065 1-138 1116 0923 0740 0500 0260 0077 —0116 —0-138 —0-065

(C) Srﬂ
00 0000 —-0155 —0294 -0405 —0476 —0500 —0476 —0-405 —0-294 —0155 0000
01 0-000 -0-154 —0-293 —0403 -0472 -0495 —0472 —-0403 —0293 —0-154  0-000
02 0000 —0153 —-0290 —-0-395 —0460 —0482 —0460 —0-395 —0-290 —0-153  0-000
03 0000 —0-149 -0-280 -0-376 —0444 —0472 —0444 -0-376 —0279 —0-149 0000
04 0000 -0139 —-0256 -0353 —0433 —0468 —0433 -—-0-353 —0256 —0-139 0000
0-5 0000 —0-118 -0-226 —0339 -0433 —0467 —0433 -0339 —-0226 —0118 0000
06 0000 —-0089 —0211 —0345 —0438 —0469 —0438 —0.345 —0211 —0089 0000
07 0000 —0.087 —0-230 —0-361 —0444 —0478 —0444 —0-361 —0.230 —0.087  0-000
0-8 0000 —0153 —-0277 —0382 —0460 —0489 —0460 —0-382 —0.277 —0-153  0-000
09 0000 —0260 —0-361 —0433 —0496 —0-508 —0496 —0433 —0361 —0260 0000
10 0000 -0-310 —0488 —0571 —0620 —0-637 —0.620 —0-571 —0488 —0-310  0-000

(d) 8//3
00 0500 0500 0500 0500 0500 0500 0500 0500 0500 0-500  0-500
01 0500 0501 0501 0501 0499 0495 0499 0501 0301 0501  0-500
02 0503 0505 0504 0504 0495 0482 0495 0504 0504 0-505  0-503
03 0510 0510 0510 0504 048 0472 048 0504 0510 0510 0-510
04 0518 0518 0514 0498 0476 0468 0476 0498 0514 0518  0-518
05 0528 0527 0512 0488 0474 0467 0474 0488 0512 0527  0-528
06 0540 0529 0503 0486 0476 0469 0476 0486 0503 0529  0-540
07 0540 0522 0501 0493 0481 0478 0481 0493 0501 0522  0-540
08 0501 0509 0512 0503 0494 0480 0494 0503 0512  0.509  0-501
09 0389 0474 0518 0519 0523 0508 0523 0519 0518 0474 0389
10 0000 0310 0488 0571 0620 0637 0620 0571 0488 0310 0000
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The generalized steady creep law for polyaxial stresses proposed by Odqvist [16] which
reduces to (6.1) in simple tension is

A 381
8;); - 71(9‘" Si]' (6'2)
where ¢;; are strain rates, and §;; are stress deviators defined as

— 1
Sij = 0,;—30i0u

and & is the effective stress given by
&= \/(%Sijsij)~
The analogy with the simple power-law deformation theory of plasticity is clear.

Therefore, the solutions of the limiting case 4 = oo presented in the previous sections
also provide the steady creep solutions for the stresses in the corresponding problems.

7. CONCLUDING REMARKS

For an elastoplastic analysis of a plane problem with an infinite region exterior to a
circular boundary, the present method involving fourier series and finite difference appears
to be useful and accurate. Comparisons of numerical results show that the generalized
Stowell formula presented in this paper and the Neuber rule provide reasonably accurate
plastic stress concentration factors for plane stress problems under pure tension, pure
shear and balanced biaxial tension. These two rules may also be applicable to other loading
conditions.
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APPENDIX A

Potters’ method

For the sake of completeness, a brief description of Potters’ method [13] used in the
present analysis will be given here.

Rewrite the set of fourth order linear differential equations (2.14) or (2.19) in the form

M
Y (@t + i+ €5l + il + Ebmllm) = 1. (A1)
m

Let ¢, = p,, and with the use of the central difference formula (with equal mesh points,

i =1,2,3,... N),equation {A1) can be written in the matrix form as
Ayi-1+By;+Cyiy = Ry, i=23,...N-1 (A2)

where

P17

q1i

Pai
Yi =1 42

Pum:

L daid

R is a column vector and 4, B, C are 2M x 2M coeflicient matrices. In the application of
Potters’ method, a vector P and a matrix @ are introduced by writing

Vi=P+0yisy, i=1,2,3,...N. (A3)
Substitution in (A2) leads to the recurrent relations
Py = (Ai41Qi+Bis ) Ry~ Ais )
Qivy = —(A4;4,Qi+ By ) 'Ciyy (Ad)
i=1,23..N-1
Similarly, write the boundary condition at x = 1 in the form
Syn—1+Tyn+Wyye =k (A5)

where S, T, W are again 2M x 2M matrices and an (N 4+ 1)st mesh point has been introduced
to permit a central difference representation of derivative on the boundary x = 1. With the
use of (A3), the value of y for (N + 1)st mesh point is

Yner = (SON_ 1 Qn+TOx+ W) Mk~SQu . Py—~SPy_,—TPy) (A6)

while the boundary conditions at x = 0 provides the knowledge of P, and Q,. Thus, the
equations are solved as follows:

First from {A4) we obtain P, Q; for i = 2,3,... N and y,,, is calculated by (A6).
Then by using (A3) we obtain y;fori=1,2,3,...N.
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APPENDIX B

Coefficients of equations (2.13) and (2.17)
(a) Plane stress. The d’s in equation (2.17) are

dy = 2c,x*+x*H4(25,-S,)
dy = 4c;x3 +4c3x* + x2H (28, —S,) + x*H ((2S; — S;) + xH 5( — 45, + 4xS), 4+ 55, — 2x5.)
dy = 6xH3S,o+x*Hg(2S,—S,)
dy = —2¢1x* +2¢,x* + ¢33 —c5x* + x2H (28— S,) + xH ,( — 28, 4+ 2xS} + S, — xS.)
+x2H (25, —S;)+ xH( — 45,4 2xS}; + 25, — xS)+ x2H (28, — S})
+xHg(—28,+2xS; — xS, +Sp)
ds = 4cyx? +6xH S+ x> H 4(2S5—S,) + 6 H5(S,o + 2xS,o) + x> H 5(4S, — 25,)
+xHg(—28,+2xSp+ Sp— xS, + 6S,,)
dg = 4c,x* + H;(2S,—S;)+x*H 5(2S,—S,) + 6xHS,,
dy = 2¢,x—3c,x* =2¢3x* —3xH Sy + H,(2S,— Sy —3xS;) —3xH,S, —3xH S,
+ H3(4S; —3xSg —2Sg)+ H(2S, — 3xS5 —S5)
dg = —6C4x +6Ccx% +68,,xH | +6xS,5H, +6xS;,H 5 + xH 4(6S,,— 3S,)
+xH 5(6S,,— 6S5) + He(2S,— 3xSy— S, + 6xS,y)
dg = —4c,x +4c3x* + H,y(2S,— Sg) +6xS,0H . + H;(4S,—2S})
+xH §(128,,—3Sg)+ He(2S, — Sy + 6xS,,)
dio = 6xH;S,g+H(2S,—S,)
diy = 2053 +2¢3x+2c5+2H (S, + So) + 2H (S, + Sg) + 2H 4(S; + Sp) + 2H 5(S! +S;)
+2H (S, +8S5)+2H(S, +Sp)
dyy = 10c, —6cex —6S,oH | — 6S.oH, +2H (S, + Sy — 384)
—68;oH 3+ H (4S5, +4S5—6S,9) +2H ¢(S; + Sy —35.,)
dy3 = 8¢, —cyx* —4cyx+2cs+ H (25, — Sg) + H, (25, — Sp) + H4(2S, — S, — 6S,4)
+ H;(2S; —S;)+ Hg(2S, — Sy —68,5)+ H(2S,+ 25, + 28, — Sy — 128,,)
diyg = dcy +Hy(2S,— Sg)+Hs(4S, —25,—68,,) + H(25,— Sp)
dis = 2c,+Hs(285,—S,)
where for A finite
H, = §(n—1)p[3n—3)n— 58"~ DF2L, +4(n—3)8*"~IF"L, +4(n—3)5*""9F'L,
+3n =38 IF L, +Hn—3)(n— 55" I8 2L+ Hn - 35" IF L,
+3n—33(n— 58" T T L +34n—3)F" 9§ L 4§~ 3L ]
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H, = {(n—Dp[(n—3)8*"~ 9T L, + 83~ 3L, + 4{(n—3)St"~ 9T L)
Hy = j{n—1)pS*¥" 3L,
Hy = 3n—Dp[S**" L, +(n—3)5*" " IF L +5(n—3)51" 3T L]
Hs = 3{(n—1)pS*" 3L,
Hg = 3(n—1)pS*" 3L,
for A infinite
H, = 28L,+in—1)S"L,+8L;+8L,+5'Ls+5 L)
Hy, = ¥n—1)[(n—3)SL,+8SL,+4(n—3)8 L]
H, = 3n-1S8L,
H, =4n—D[[SLs+n-3)SLs+3n—3)8'Ly)
Hs = %(n—l)S‘L;
H¢ = {n—1)SL,.

(b) Plane strain (4 infinite). The A’s in equation (2.13) are

Aym = ¢, x* sin mb
Asp = 2x3(c; +xc3) sin m
Ay = X*[{ —c (1 +2m?) + x%c, + xc3 — ¢} sin mO +2mc, cos m)
Ay = x[{c,(142m?)— x*cy — xc3(1 4+ 2m?) + ¢} sin 0+ m(4xce — 2¢,) cos mb]
Aom = [c1(m* —4m?) + x%c,m? + 3xc3m? — csm?] sin mf + [c4(4m — 2m>) — dxcgm] cos mé
where

¢, = §2

c; = Hn—1)[4(n—3)8*+83"

C3 = n—1SY

cy = 3n—138¥

¢s = Hn—-DEn~3)5+53

ce = n—1)[An—-3)88 +85.
The d’s in equation (2.17) are

d, = c;x*+ H;Sx?

dy = 2¢,x*+2c3x* + H,Sx* 4+ 3H,;Sx +2H 38'x% + HgS'x2

dy = 2H;S,gx + H¢Sx?

dy = —c1x* +cpx*+c3x3 —csx® + H, Sx? + H,Sx+ H,8'x* + H,8"x* + 2H,8'x

+H,Sx*+HS"x*+HgS x> + HeS'x
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ds = 2c4x* +2H;8,4x +2H 38,0 +4H 3S\ox + H,Sx? + 2H (8'X? + H (Sx +2H ¢S, px + H (S'x?
dg = 2¢;x* —H3S+ HSx* 4+ 2H ¢S, px
dr = c;x—cyx3—c3x? +osx—H;xS—H,S —H,S'x~H38"x—2H,S
CH,Sx—HS'x—HS x—HS
dg = —2c4x+4cgx* +2H,S,px +2H,S.ox +2H,S/,x — H,Sx +2H ,S;x
F2H Siyx—2H 8% — HoS+2H Slyx— HS'x
do = —2¢,x+2¢3x* —H,S—2H,S' +2H,S,ox — HsSx +4H sS,5x — HeS' + 2H ¢S, x
dyg = 2HsS,gx—H S
d, =0
dyy = ey —Acex—2H,S,g— 2H, Sy — 2HSly— 2H,Sig— 2H §S5y — 2H, S0y
diy = 4c;—cyx*~3c3x+cs—H,S— H,S' —H3S"—2H,S,,
—H,S —HS" —4HS;y~ HeS" — 2H,S.,

dyy = 2ca—H,S~2HS,;—2HsS — H,S’

dlS == CI—H5S
where
S =HS,-S,)

H =25L,+in—1)S"L,+8 L, +8L,+8'Ls+8 L)
H, = ¥n—1)[(n—=3)8L, +8SL;+4(n—3)S' L]

H,; = }n—138L,

H, =in—1)[8L,+(n=3)8Ls+in—-3)8Lg]

Hy = ¥n—1DSL;

H, = n—1)8L,

and

L, = X*F" £ 23F" — x2F" + 2x*F"" + xF' = 2xF"" +4F " + F""
L, = x*F"—x3F —x2F"

Ly = 2x*F" + x3F" — x*F'+ 2x*F" = 3xF"

L, = 2x2F" —2xF" +2F " +4F

Ls = F"+xF —x*F"

L¢ = 4x*F" —xF).
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APPENDIX C

Derivation by Stowell’s method of stress concentration factor at a circular hole in an infinite
plate under pure shear

Assume that the stress field in an infinite plate with a circular hole under pure shear is

4 2 3 4
G, = Gaw(1—12+-%- sin 20
r r
3 4
Gy = —Gow(1+r—‘1) sin 20 (1)

2¢2 3
G = Gam(1+~§2—— :14) cos 20

where G is a function of E /(E,),, . Here E; is the secant modulus at any point and (E,),,
is the secant modulus at infinity. For the elastic case, E; is constant everywhere and (C1)
gives the elastic solution when G = 1, therefore G(1) = 1. On the other hand, for the material
getting very plastic the stress concentration factor defined as [(8),,,/4]/6 , must reduce to
unity, hence G(0) = ,/(3)/4 when [(EJ), r;a)/(EJ — 0. This stress field satisfies the boundary
conditions both at the hole and at infinity.

Now the equilibrium equations are

o,+r la,g+r Yo,—a,) =0
rlog+o,e+2r e, = 0.
When the assumed stresses are substituted into these equations, the results are

4a®> 3a
O';+r—lo",9+r_1(o',—0'o) = am[(l—%-}- - ) sin 20

(Es)w

2a*

_ 3a E, \ dG
o l(”_ﬂ“ ) cos 2"(<Es)m) ]d[Es/(Es)w]

r log+o,e+2rte,, = am[—r“(l +—) sin 26

(E)w )

2a®> 3a dG
+(”7 ) cos 26 (Egm) ]d[Es/(Es)w]

According to Stowell’s arguments, the error in the satisfaction of these equations is
proportional to

dG
d[EAE,)e)

and it is desired that the mean square of the error be made a minimum ; that is

JI[ dG ]2 LB
0 d[Es/(Es)w] (Es)uo
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should be a minimum. The calculus of variations for this expression gives the Euler equation
as

d dG
_ 3 -
d[E;/(Es)wJ[ d[Es/(Es)w]} 0

and from which

E
G = Cl(E—;+c.2.

Here ¢, and ¢, are constant, which can be determined by the conditions G{1) = 1 and
G(0) = ./(3)/4. Hence

)

G =
( 4 [(E), 4
and the stress concentration factor is

I’(‘ - (&)a,nm

4 (Es)a,n/4
6o

= 1+(—-—1 E).

V3
(Received 2 February 1971 ; revised 1 July 1971)

AGcTpakT —MeToa0M, 3aKMIOYAIOWMM Daibl OYPbe M KOHEMHLIE PA3HULbBI, PELIAIOTCA 3aa4¥ HEJIMHE-
HHBIX KPAEBBIX YCAOBHI HECKOHEUHO YLPYTO-NNacTHYHON IJIACTUHKM C KDYITIBIM OTBEPCTHEM, MTOABEPKEH-
HOM HEWCTBHIO YHMCTOrO PAacTMKEHHS M 4HCTOro casura B OeckomeusocTH. Ha ocHOBE 3TuX peiueHuit,
HCCAEAYETCA BAXHOCTh 3apncumMocT Helbepa, mexay dakTopaMu KOHLEHTPAUuM HanpxeHn#t u nedop-
MALIHK, A1 33024 B IVIOCKOM HanpsbkeHHOM cocTosunK. [Ipennionoraerca o600uiennas dopmyna Cronenma
Ons GakTopa KOHUEHTpauuil HANPAXKEHNIE B 3aJa4aX, B KOTOPBIX NITUIIOKEHHAS HATPY3Ka MOXET ObITh KaK
YUCTBIM CABHIOM, TAK M MHCTRIM PACTSXKEHHEH, MM Aajee, APYIMMH COCTOSHHAMM Hanpshkenuit, [Tyrem
3TOTO XK€ CAMOTO METOA, NOJIYYAKOTCA PACIIPEAENEHHS HANPAXKEHHH BOKPYT KECTKOTO, KPYriaoro, HITHH-
APHYECKOTO BKJIFOHEHMS, HAXOAAWErocs B 6ecKkoOHeYHOM, XECTKO-IIIACTUYECKOA MaTpHLE, NOABEPKEHHON
PABHOMEPHOMY CIOBHIY W PACTAXKECHUIO.



